Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:48:05.375Z Has data issue: false hasContentIssue false

Elements of the radiation-induced structural self-organization in materials

Published online by Cambridge University Press:  31 January 2011

C. Abromeit
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, D-1000 Berlin 39, Federal Republic of Germany
H. Wollenberger
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, D-1000 Berlin 39, Federal Republic of Germany
Get access

Abstract

A crystal irradiated by energetic particles is an open system capable of self-organization. The minimum requirements for self-organization of the microstructure (defect sinks) are derived by a linear stability analysis based upon a rate equation treatment of the defect reactions. The selected description eases the application also for proper chemical reactions. Coupling of defect fluxes to solute fluxes and resulting compositional self-organization in alloys is also considered

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Russell, K. C.Prog. Mater. Sci. 28, 229 (1984).CrossRefGoogle Scholar
2Proceedings of an International Conference on Non-Linear Phenomena in Materials Science, Aussois, France, September 1987, edited by Martin, G. and Kubin, L. P. (Trans. Tech Aedermannsdorf, Switzerland, 1988).Google Scholar
3Brager, H. R. and Garner, F. A. in the Proceedings of the 12th International Conference on Effects of Radiation on Materials, edited by Garner, F. A. and Perrin, J. S. ASTM STP87O (ASTM, Philadelphia, 1985), p. 139.Google Scholar
4Williams, T. M.Boothby, R. M. and Titchmarsh, J. M. in the Proceedings of the Symposium on Radiation-Induced Sensitisation in AusteniticSteels, edited by Norris, D. I. R. (CEGB, Gloucestershire, UK, 1987), p. 116.Google Scholar
5Waite, T. R.Phys. Rev. 107, 463 (1957).Google Scholar
6Haken, H.Synergetics (Springer-Verlag, Berlin, 1977).Google Scholar
7Bullough, R.Eyre, B. L. and Krishan, K.Proc. R. Soc. London Ser. A 346, 81 (1975).Google Scholar
8Krishan, K. in Ref. 2.Google Scholar
9Murphy, S. M.Europhys. Lett. 3, 1267 (1987).CrossRefGoogle Scholar
10Murphy, S. M. in Ref. 2.Google Scholar
Martin, G.Philos. Mag. 32, 615 (1975).Google Scholar
12Krishan, K.Nature 287, 420 (1980).CrossRefGoogle Scholar
13Krishan, K.Philos. Mag. A 45, 401 (1982); Radiat. Eff. 66, 121 (1982).CrossRefGoogle Scholar
14Koptelov, E. A. and Semenov, A. A.Phys. Status Solidi A 89, 117 (1985); 93, K33 (1986).Google Scholar
15Jaeger, W.Ehrhart, P. and Schilling, W. in Ref. 2; Jaeger, W.Ehrhart, P.Schilling, W.Dworschak, F.Gadalla, A. A. and Tsu-kuda, N., Mater. Sci. Forum 15-18, 881 (1987).Google Scholar
16Sniegowski, J. J. and Wolfer, W. G. in the Proceedings of the Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, edited by Davis, J. W. and Michel, D. J. (AIME, Warrendale, 1984), p. 579.Google Scholar
17Abromeit, C. and Martin, G. in Ref. 2.Google Scholar
18Krishan, K. and Abromeit, C.J. Phys. F 14, 1103 (1984).CrossRefGoogle Scholar
19Abromeit, C. and Krishan, K.Mater. Sci. Forum 3, 353 (1985).Google Scholar
20Abromeit, C. and Krishan, K.Acta Metall. 34, 1515 (1986).CrossRefGoogle Scholar
21Martin, G.Phys. Rev. B 21, 2122 (1980); Phys. Rev. Lett. 50, 250 (1983).Google Scholar
22Cauvin, R. and Martin, G. in Solid–Solid Phase Transformations, edited by Aaronson, H. I.Laughlin, D. E.Sekerka, R. F. and Wayman, C. M. (AIME, New York, 1982), pp. 281 and 287.Google Scholar
23Abromeit, C. and Martin, G. in Radiation-Induced Changes in Microstructures, edited by Garner, F. A.Packan, N. H. and Kumar, A. S., ASTM STP955 (ASTM, Philadelphia, 1987), p. 820.Google Scholar