Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T13:12:40.529Z Has data issue: false hasContentIssue false

Elasticity of high-entropy alloys from ab initio theory

Published online by Cambridge University Press:  01 August 2018

Shuo Huang*
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
Fuyang Tian
Affiliation:
Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China; and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China
Levente Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden; Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Uppsala SE-75120, Sweden; and Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, Budapest H-1525, Hungary
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-entropy alloys (HEAs) consisting of multiprincipal elements have demonstrated many interesting structural, physical, and chemical properties for a wide range of applications. This article is a review of the current theoretical research on the elastic parameters of HEAs. The performance of various ab initio-based computational models (effective medium and supercell approaches) is carefully analyzed. Representative theoretical elastic parameters of different HEAs, including single-crystal elastic constants, polycrystalline elastic moduli, elastic anisotropy, and Debye temperature, are presented and discussed. For comparison, simple mixtures of the elastic moduli of pure elements are calculated and contrasted with the ab initio results. The present work provides a reference for future theoretical investigation of the micromechanical properties of systems based on HEAs.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Yeh, J.W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).CrossRefGoogle Scholar
Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).CrossRefGoogle Scholar
Gao, C.M. and Alman, E.D.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).CrossRefGoogle Scholar
Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).CrossRefGoogle Scholar
Cantor, B.: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).CrossRefGoogle Scholar
Gao, M.C., Gao, P., Hawk, J.A., Ouyang, L., Alman, D.E., and Widom, M.: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).CrossRefGoogle Scholar
Tian, F.: A review of solid-solution models of high-entropy alloys based on ab initio calculations. Front. Mater. 4, 36 (2017).CrossRefGoogle Scholar
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer, Switzerland, 2016).CrossRefGoogle Scholar
Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).CrossRefGoogle Scholar
Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., and Gao, M.C.: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 696, 1139 (2017).CrossRefGoogle Scholar
Yuan, Y., Wu, Y., Tong, X., Zhang, H., Wang, H., Liu, X.J., Ma, L., Suo, H.L., and Lu, Z.P.: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).CrossRefGoogle Scholar
Zhao, Y.J., Qiao, J.W., Ma, S.G., Gao, M.C., Yang, H.J., Chen, M.W., and Zhang, Y.: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 10 (2016).CrossRefGoogle Scholar
Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).CrossRefGoogle Scholar
Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).CrossRefGoogle Scholar
Tong, C.J., Chen, Y.L., Yeh, J.W., Lin, S.J., Chen, S.K., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).CrossRefGoogle Scholar
Kao, Y.F., Chen, T.J., Chen, S.K., and Yeh, J.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).CrossRefGoogle Scholar
Chou, H.P., Chang, Y.S., Chen, S.K., and Yeh, J.W.: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng., B 163, 184 (2009).CrossRefGoogle Scholar
Wang, W.R., Wang, W.L., Wang, S.C., Tsai, Y.C., Lai, C.H., and Yeh, J.W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).CrossRefGoogle Scholar
Tong, C.J., Chen, M.R., Yeh, J.W., Lin, S.J., Chen, S.K., Shun, T.T., and Chang, S.Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).CrossRefGoogle Scholar
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Tsai, M.H., Wang, C.W., Tsai, C.W., Shen, W.J., Yeh, J.W., Gan, J.Y., and Wu, W.W.: Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J. Electrochem. Soc. 158, H1161 (2011).CrossRefGoogle Scholar
Chou, Y.L., Wang, Y.C., Yeh, J.W., and Shih, H.C.: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros. Sci. 52, 3481 (2010).CrossRefGoogle Scholar
Kao, Y.F., Lee, T.D., Chen, S.K., and Chang, Y.S.: Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 52, 1026 (2010).CrossRefGoogle Scholar
Chuang, M.H., Tsai, M.H., Wang, W.R., Lin, S.J., and Yeh, J.W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).CrossRefGoogle Scholar
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W., and Dolinšek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).CrossRefGoogle ScholarPubMed
Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).CrossRefGoogle Scholar
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).CrossRefGoogle Scholar
Hsu, C.Y., Wang, W.R., Tang, W.Y., Chen, S.K., and Yeh, J.W.: Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv. Eng. Mater. 12, 44 (2010).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Kohn, W.: Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999).CrossRefGoogle Scholar
Huang, S., Li, W., Lu, S., Tian, F., Shen, J., Holmström, E., and Vitos, L.: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 44 (2015).CrossRefGoogle Scholar
Huang, S., Li, W., Li, X., Schönecker, S., Bergqvist, L., Holmström, E., Varga, L.K., and Vitos, L.: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 71 (2016).CrossRefGoogle Scholar
Huang, S., Vida, Á., Molnár, D., Kádas, K., Varga, L.K., Holmström, E., and Vitos, L.: Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy. Appl. Phys. Lett. 107, 251906 (2015).CrossRefGoogle Scholar
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).CrossRefGoogle Scholar
Niu, C., Zaddach, A.J., Koch, C.C., and Irving, D.L.: First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. J. Alloys Compd. 672, 510 (2016).CrossRefGoogle Scholar
Feng, R., Liaw, P.K., Gao, M.C., and Widom, M.: First-principles prediction of high-entropy-alloy stability. npj Comput. Mater. 3, 50 (2017).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Vitos, L.: Computational Quantum Mechanics for Materials Engineers (Springer, London, 2007).Google Scholar
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Soven, P.: Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967).CrossRefGoogle Scholar
Győrffy, B.L.: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 5, 2382 (1972).CrossRefGoogle Scholar
Vitos, L., Abrikosov, I.A., and Johansson, B.: Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87, 156401 (2001).CrossRefGoogle ScholarPubMed
Nordheim, L.: Zur elektronentheorie der metalle. I. Ann. Phys. 401, 607 (1931).CrossRefGoogle Scholar
Stripp, K.F. and Kirkwood, J.G.: Lattice vibrational spectrum of imperfect crystals. J. Chem. Phys. 22, 1579 (1954).CrossRefGoogle Scholar
Wojtowicz, P.J. and Kirkwood, J.G.: Contribution of lattice vibrations to the order-disorder transformation in alloys. J. Chem. Phys. 33, 1299 (1960).CrossRefGoogle Scholar
Bellaiche, L. and Vanderbilt, D.: Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61, 7877 (2000).CrossRefGoogle Scholar
Zunger, A., Wei, S.H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle ScholarPubMed
Jiang, C. and Uberuaga, B.P.: Efficient ab initio modeling of random multicomponent alloys. Phys. Rev. Lett. 116, 105501 (2016).CrossRefGoogle ScholarPubMed
Song, H., Tian, F., Hu, Q.M., Vitos, L., Wang, Y., Shen, J., and Chen, N.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).CrossRefGoogle Scholar
Sanchez, J.M., Ducastelle, F., and Gratias, D.: Generalized cluster description of multicomponent systems. Phys. A 128, 334 (1984).CrossRefGoogle Scholar
Connolly, J.W.D. and Williams, A.R.: Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27, 5169 (1983).CrossRefGoogle Scholar
Laks, D.B., Ferreira, L.G., Froyen, S., and Zunger, A.: Efficient cluster expansion for substitutional systems. Phys. Rev. B 46, 12587 (1992).CrossRefGoogle ScholarPubMed
Wei, S.H., Ferreira, L.G., Bernard, J.E., and Zunger, A.: Electronic properties of random alloys: Special quasirandom structures. Phys. Rev. B 42, 9622 (1990).CrossRefGoogle ScholarPubMed
van de Walle, A., Asta, M., and Ceder, G.: The alloy theoretic automated toolkit: A user guide. Calphad 26, 539 (2002).CrossRefGoogle Scholar
van de Walle, A.: Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33, 266 (2009).CrossRefGoogle Scholar
van de Walle, A., Tiwary, P., de Jong, M., Olmsted, D.L., Asta, M., Dick, A., Shin, D., Wang, Y., Chen, L.Q., and Liu, Z.K.: Efficient stochastic generation of special quasirandom structures. Calphad 42, 13 (2013).CrossRefGoogle Scholar
Tian, L.Y., Wang, G.S., Harris, J.S., Irving, D.L., Zhao, J.J., and Vitos, L.: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).CrossRefGoogle Scholar
Győrffy, B.L., Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F: Met. Phys. 15, 1337 (1985).CrossRefGoogle Scholar
Staunton, J., Gyorffy, B.L., Pindor, A.J., Stocks, G.M., and Winter, H.: The “disordered local moment” picture of itinerant magnetism at finite temperatures. J. Magn. Magn. Mater. 45, 15 (1984).CrossRefGoogle Scholar
Pinski, F.J., Staunton, J., Győrffy, B.L., Johnson, D.D., and Stocks, G.M.: Ferromagnetism versus antiferromagnetism in face-centered-cubic iron. Phys. Rev. Lett. 56, 2096 (1986).CrossRefGoogle Scholar
Chen, S.Y., Yang, X., Dahmen, K.A., Liaw, P.K., and Zhang, Y.: Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy. 16, 870 (2014).CrossRefGoogle Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr.–Cryst. Mater. 220, 567 (2005).CrossRefGoogle Scholar
Tian, F., Wang, D., Shen, J., and Wang, Y.: An ab initio investgation of ideal tensile and shear strength of TiVNbMo high-entropy alloy. Mater. Lett. 166, 271 (2016).CrossRefGoogle Scholar
Gschneidner, K.A.: Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. 16, 275 (1964).CrossRefGoogle Scholar
Tian, F.Y., Varga, L.K., Chen, N., Delczeg, L., and Vitos, L.: Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B 87, 075144 (2013).CrossRefGoogle Scholar
Lucas, M.S., Wilks, G.B., Mauger, L., Muñoz, J.A., Senkov, O.N., Michel, E., Horwath, J., Semiatin, S.L., Stone, M.B., Abernathy, D.L., and Karapetrova, E.: Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 251907 (2012).CrossRefGoogle Scholar
Kao, Y.F., Chen, S.K., Chen, T.J., Chu, P.C., Yeh, J.W., and Lin, S.J.: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607 (2011).CrossRefGoogle Scholar
Lucas, M.S., Belyea, D., Bauer, C., Bryant, N., Michel, E., Turgut, Z., Leontsev, S.O., Horwath, J., Semiatin, S.L., McHenry, M.E., and Miller, C.W.: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).CrossRefGoogle Scholar
Huang, S., Holmström, E., Eriksson, O., and Vitos, L.: Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 95, 80 (2018).CrossRefGoogle Scholar
Niu, C., Zaddach, A.J., Oni, A.A., Sang, X., Hurt, J.W., LeBeau, J.M., Koch, C.C., and Irving, D.L.: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 106, 161906 (2015).CrossRefGoogle Scholar
Lucas, M.S., Mauger, L., Muñoz, J.A., Xiao, Y., Sheets, A.O., Semiatin, S.L., Horwath, J., and Turgut, Z.: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).CrossRefGoogle Scholar
Wang, S.Q.: Atomic structure modeling of multi-principal-element alloys by the principle of maximum entropy. Entropy. 15, 5536 (2013).CrossRefGoogle Scholar
Zheng, S.M., Feng, W.Q., and Wang, S.Q.: Elastic properties of high entropy alloys by MaxEnt approach. Comput. Mater. Sci. 142, 332 (2018).CrossRefGoogle Scholar
Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high-entropy alloys. JOM 64, 830 (2012).CrossRefGoogle Scholar
Wu, Y.D., Cai, Y.H., Chen, X.H., Wang, T., Si, J.J., Wang, L., Wang, Y.D., and Hui, X.D.: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 83, 651 (2015).CrossRefGoogle Scholar
VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J.: Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103 (2005).CrossRefGoogle Scholar
Widom, M., Huhn, W.P., Maiti, S., and Steurer, W.: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).CrossRefGoogle Scholar
Widom, M.: Entropy and diffuse scattering: Comparison of NbTiVZr and CrMoNbV. Metall. Mater. Trans. A 47, 3306 (2016).CrossRefGoogle Scholar
Feng, B. and Widom, M.: Elastic stability and lattice distortion of refractory high entropy alloys. Mater. Chem. Phys. 210, 309 (2017).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).CrossRefGoogle Scholar
Hebbache, M. and Zemzemi, M.: Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond. Phys. Rev. B 70, 224107 (2004).CrossRefGoogle Scholar
Gao, M.C., Suzuki, Y., Schweiger, H., Doğan, Ö.N., Hawk, J., and Widom, M.: Phase stability and elastic properties of Cr–V alloys. J. Phys.: Condens. Matter 25, 075402 (2013).Google ScholarPubMed
Tian, F.Y., Wang, Y., and Vitos, L.: Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys. J. Appl. Phys. 121, 015105 (2017).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).CrossRefGoogle Scholar
Söderlind, P., Eriksson, O., Wills, J.M., and Boring, A.M.: Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 48, 5844 (1993).CrossRefGoogle ScholarPubMed
Huang, S., Vida, Á., Li, W., Molnár, D., Kwon, S.K., Holmström, E., Varga, B., Varga, L.K., and Vitos, L.: Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment. Appl. Phys. Lett. 110, 241902 (2017).CrossRefGoogle Scholar
Vida, Á., Varga, L.K., Chinh, N.Q., Molnár, D., Huang, S., and Vitos, L.: Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys. Mater. Sci. Eng., A 669, 14 (2016).CrossRefGoogle Scholar
Tian, F.Y., Delczeg, L., Chen, N.X., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).CrossRefGoogle Scholar
Huang, S., Li, X., Huang, H., Holmström, E., and Vitos, L.: Mechanical performance of FeCrCoMnAlx high-entropy alloys from first-principle. Mater. Chem. Phys. 210, 37 (2018).CrossRefGoogle Scholar
Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).CrossRefGoogle Scholar
Cao, P.Y., Ni, X.D., Tian, F.Y., Varga, L.K., and Vitos, L.: Ab initio study of AlxMoNbTiV high-entropy alloys. J. Phys.: Condens. Matter 27, 075401 (2015).Google ScholarPubMed
Qiu, S., Miao, N., Zhou, J., Guo, Z., and Sun, Z.: Strengthening mechanism of aluminum on elastic properties of NbVTiZr high-entropy alloys. Intermetallics 92, 7 (2018).CrossRefGoogle Scholar
Feng, W.Q., Qi, Y., and Wang, S.Q.: Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys. Metals 7 (2017).CrossRefGoogle Scholar
Tian, F.Y., Varga, L.K., Shen, J., and Vitos, L.: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).CrossRefGoogle Scholar
Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z.: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).CrossRefGoogle ScholarPubMed
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
Wang, Z.J., Guo, S., and Liu, C.T.: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1966 (2014).CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
Liu, L., Zhu, J.B., Zhang, C., Li, J.C., and Jiang, Q.: Microstructure and the properties of FeCoCuNiSnx high entropy alloys. Mater. Sci. Eng., A 548, 64 (2012).CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).CrossRefGoogle Scholar
Liu, L., Zhu, J.B., Li, L., Li, J.C., and Jiang, Q.: Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys. Mater. Des. 44, 223 (2013).CrossRefGoogle Scholar
Praveen, S., Murty, B.S., and Kottada, R.S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).CrossRefGoogle Scholar
Huang, S., Vida, Á., Heczel, A., Holmström, E., and Vitos, L.: Thermal expansion, elastic and magnetic properties of FeCoNiCu-based high-entropy alloys using first-principle theory. JOM 69, 2107 (2017).CrossRefGoogle Scholar
Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., and Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633 (2010).CrossRefGoogle Scholar
Simmons, G.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, 1971).Google Scholar
Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985).Google Scholar
Grimvall, G.: Thermophysical Properties of Materials (North-Holland, Amsterdam, 1999).Google Scholar
Steinle-Neumann, G., Stixrude, L., and Cohen, R.E.: First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure. Phys. Rev. B 60, 791 (1999).CrossRefGoogle Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).CrossRefGoogle Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle ScholarPubMed
Tian, F., Varga, L.K., and Vitos, L.: Predicting single phase CrMoWX high entropy alloys from empirical relations in combination with first-principles calculations. Intermetallics 83, 9 (2017).CrossRefGoogle Scholar
Supplementary material: PDF

Huang et al. supplementary material

Appendices I-II

Download Huang et al. supplementary material(PDF)
PDF 343.7 KB