Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T21:57:32.924Z Has data issue: false hasContentIssue false

Effect of segregated Al on $\left\{ {10\bar 12} \right\}$ and $\left\{ {10\bar 11} \right\}$ twinning in Mg

Published online by Cambridge University Press:  03 November 2015

Naoki Miyazawa*
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
Takashi Yoshida
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
Motohiro Yuasa
Affiliation:
Structural Materials Research Institute, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
Yasumasa Chino
Affiliation:
Structural Materials Research Institute, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
Mamoru Mabuchi
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Molecular dynamics simulations of compression deformation of $\left[ {11\bar 20} \right]$-textured 2-dimensional polycrystalline pure Mg, Mg–0.1 at.%Al, and Mg–1.0 at.%Al models were performed at 5 and 300 K. A $\left\{ {10\bar 11} \right\}$ twin nucleated before formation of a $\left\{ {10\bar 12} \right\}$ twin in the simulations at 5 K, while a $\left\{ {10\bar 11} \right\}$ twin nucleated after formation of a $\left\{ {10\bar 12} \right\}$ twin in the simulations at 300 K. The formation of a $\left\{ {10\bar 11} \right\}$ twin was the result of the glide of pyramidal 〈c + a〉 partial dislocations of ${1 \mathord{\left/ {\vphantom {1 6}} \right. \kern-\nulldelimiterspace} 6}\left\{ {10\bar 11} \right\}\left[ {\bar 2023} \right]$. $\left\{ {10\bar 11} \right\}$ twin formation was suppressed at the sites around the Al atoms because the strong Mg–Al bond suppresses atomic shuffling. However, formation was not suppressed at the sites away from the Al atoms because the effect of strong Mg–Al bond is short range. On the other hand, because $\left\{ {10\bar 12} \right\}$ twinning requires the simultaneous glide of zonal dislocations, Al inevitably suppressed $\left\{ {10\bar 12} \right\}$ twinning.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hakamada, M., Furuta, T., Chino, Y., Chen, Y., Kusuda, H., and Mabuchi, M.: Life cycle investory on magnesium alloy substitution in vehicles. Energy 32, 1352 (2007).Google Scholar
Yoo, M.H.: Slip, twinning, and fracture in hexagonal close-packaged metals. Metall. Trans. A 12, 409 (1981).Google Scholar
Koike, J.: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall. Mater. Trans. A 36, 1689 (2005).Google Scholar
Barnett, M.R.: Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng., A 464, 1 (2007).Google Scholar
Barnett, M.R.: Twinning and the ductility of magnesium alloys: Part II: “Contraction” twins. Mater. Sci. Eng., A 464, 8 (2007).Google Scholar
Chapuis, A. and Driver, J.H.: Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 59, 1986 (2011).Google Scholar
Braszczyńska-Malik, K.N., Lityńska, L., and Baliga, W.: Transmission electron microscopy investigations of AZ91 alloy deformed by equal-channel angular pressing. J. Microsc. 224, 15 (2006).CrossRefGoogle ScholarPubMed
Barnett, M.R., Keshavarz, Z., Beer, A.G., and Atwell, D.: Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 52, 5093 (2004).Google Scholar
Serra, A. and Bacon, D.J.: Computer simulation of screw dislocation interactions with twin boundaries in H.C.P. metals. Acta Metall. Mater. 43, 4465 (1995).Google Scholar
Yuasa, M., Masunaga, K., Mabuchi, M., and Chino, Y.: Interaction mechanisms of screw dislocations with $\left\{ {10\bar 11} \right\}$ and $\left\{ {10\bar 12} \right\}$ twin boundaries in Mg. Philos. Mag. 94, 285 (2014).Google Scholar
Ando, D., Koike, J., and Sutou, Y.: Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Mater. 58, 4316 (2010).CrossRefGoogle Scholar
Jain, A., Duygulu, O., Brown, D.W., Tomé, C.N., and Agnew, S.R.: Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater. Sci. Eng., A 486, 545 (2008).Google Scholar
Barnett, M.R.: A rationale for the strong dependence of mechanical twinning on grain size. Scr. Mater. 59, 696 (2008).Google Scholar
Xin, R., Wang, M., Huang, X., Guo, C., and Liu, Q.: Observation and schmid factor analysis of multiple twins in a warm-rolled Mg-3Al-1Zn alloy. Mater. Sci. Eng., A 596, 41 (2014).Google Scholar
Jiang, L., Jonas, J.J., Mishra, R.K., Luo, A.A., Sachdev, A.K., and Godet, S.: Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 55, 3899 (2007).Google Scholar
Beyerlein, I.J., Capolungo, L., Marshall, P.E., McCabe, R.J., and Tomé, C.N.: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 2161 (2010).Google Scholar
Serra, A., Pond, R.C., and Bacon, D.J.: Computer simulation of the structure and mobility of twinning dislocations in H.C.P. metals. Acta Metall. Mater. 39, 1469 (1991).Google Scholar
Wang, J., Hoagland, R.G., Hirth, J.P., Capolungo, L., Beyerlein, I.J., and Tomé, C.N.: Nucleation of a $\left\{ {\bar 1012} \right\}$ twin in hexagonal close-packaged crystals. Scr. Mater. 61, 903 (2009).Google Scholar
Wang, J., Hirth, J.P., and Tomé, C.N.: $\left\{ {\bar 1012} \right\}$ twinning nucleation mechanisms in hexagonal-close-packed crystal. Acta Mater. 57, 5521 (2009).Google Scholar
Capolungo, L., Beyerlein, I.J., and Tomé, C.N.: Slip-assisted twin growth in hexagonal close-packaged metals. Scr. Mater. 60, 32 (2009).Google Scholar
Li, B. and Ma, E.: Zonal dislocations mediating $\left\{ {10\bar 11} \right\}\left\langle {10\bar 1\bar 2} \right\rangle$ twinning in magnesium. Acta Mater. 57, 1734 (2009).Google Scholar
Wang, J., Beyerlein, I.J., and Tomé, C.N.: An atomic probabilistic perspective on twin nucleation in Mg. Scr. Mater. 63, 741 (2010).Google Scholar
Barrett, C.D., El Kadiri, H., and Tschopp, M.A.: Breakdown of the Schmid law in homogeneous nucleation events of slip and twinning in magnesium. J. Mech. Phys. Solids 60, 2084 (2012).Google Scholar
Wang, J., Beyerlein, I.J., and Hirth, J.P.: Nucleation of elementary $\left\{ {10\bar 11} \right\}$ and $\left\{ {\bar 1013} \right\}$ twinning dislocations at a twin boundary in hexagonal close-packaged crystals. Modell. Simul. Mater. Sci. Eng. 20, 024001 (2012).Google Scholar
Xu, B., Capolungo, L., and Rodney, D.: On the importance of prismatic/basal interfaces in the growth of $\left\{ {\bar 1012} \right\}$ twins in hexagonal close packaged crystals. Scr. Mater. 68, 901 (2013).Google Scholar
Wang, J., Yadav, S.K., Hirth, J.P., Tomé, C.N., and Beyerlein, I.J.: Pure-shuffle nucleation of deformation twins in hexagonal-close-packaged metals. Mater. Res. Lett. 1, 126 (2013).Google Scholar
Aghababaei, R. and Joshi, S.P.: Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations. Acta Mater. 69, 326 (2014).Google Scholar
Barrett, C.D. and El Kadiri, H.: The roles of grain boundary dislocations in the nucleation of $\left\{ {10\bar 12} \right\}$ twinning. Acta Mater. 63, 1 (2014).Google Scholar
Wang, J., Beyerlein, I.J., Hirth, J.P., and Tomé, C.N.: Twinning dislocations on $\left\{ {10\bar 11} \right\}$ and $\left\{ {\bar 1013} \right\}$ planes in hexagonal close-packaged crystals. Acta Mater. 59, 3990 (2011).Google Scholar
Ostapovets, A. and Serra, A.: Characterization of the matrix-twin interface of a $\left\{ {101\bar 2} \right\}$ twin during growth. Philos. Mag. 94, 2827 (2014).Google Scholar
Mendelson, S.: Zonal dislocations and dislocation reactions with twins in HCP metals. Scr. Metall. 4, 5 (1970).Google Scholar
Beyerlein, I.J., McCabe, R.J., and Tomé, C.N.: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solids 59, 988 (2011).Google Scholar
Stanford, N. and Barnett, M.R.: Solute strengthening of prismatic slip, basal slip and $\left\{ {10\bar 12} \right\}$ twinning in Mg and Mg-Zn binary alloys. Int. J. Plast. 47, 165 (2013).Google Scholar
Stanford, N., Marceau, R.K.W., and Barnett, M.R.: The effect of high yttrium solute concentration on the twinning behavior of magnesium alloys. Acta Mater. 82, 447 (2015).Google Scholar
Eckelmeyer, K.H. and Hertzberg, R.: Deformation in wrought Mg-9wt pct Y. Metall. Mater. Trans. B 1, 3411 (1970).Google Scholar
Chang, S.Y., Nakagaida, T., Hong, S.K., Shin, D.H., and Sato, T.: Effect of yttrium on high temperature strength of magnesium. Mater. Trans. 43, 1332 (2001).Google Scholar
Agnew a, S.R., Mulay, R.P., Polesak, F.J. III, Calhoun, C.A., Bhattacharyya, J.J., and Clausen, B.: In situ neutron diffraction and polycrystal plasticity modeling of a Mg-y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms. Acta Mater. 61, 3769 (2013).Google Scholar
Chino, Y., Kado, M., and Mabuchi, M.: Compressive deformation behavior at room temperature—773K in Mg-0.2 mass%(0.035 at.%)Ce alloy. Acta Mater. 56, 387 (2008).Google Scholar
Kim, D.H., Manuel, M.V., Ebrahimi, F., Tulenko, J.S., and Phillpot, S.R.: Deformation processes in $\left[ {11\bar 20} \right]$ -textured nanocrystalline Mg by molecular dynamics. Acta Mater. 58, 6217 (2010).Google Scholar
Kim, D.H., Ebrahimi, F., Manuel, M.V., Tulenko, J.S., and Phillpot, S.R.: Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation. Mater. Sci. Eng., A 528, 5411 (2011).Google Scholar
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 1, 1 (2002).Google Scholar
Yamakov, V., Wolf, D., Salazar, M., Phillpot, S.R., and Gleiter, H.: Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 49, 2713 (2001).Google Scholar
Jelinek, B., Groh, S., Horstemeyer, M.F., Houze, J., Kim, S.G., Wagner, G.J., Moitra, A., and Baskes, M.I.: Modified embedded atom method potential for Al, Si, Mg, Cu and Fe alloys. Phys. Rev. B 85, 245102 (2012).CrossRefGoogle Scholar
Teng, H., Zhang, X., Zhang, Z., Li, T., and Cockcroft, S.: Research on microstructures of sub-rapidly solidified AZ61 magnesium alloy. Mater. Charact. 60, 482 (2009).CrossRefGoogle Scholar
Duparc, O.H., Larere, A., Lezzar, B., Khalfallah, O., and Paidar, V.: Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′ {332} tilt grain boundary. J. Mater. Sci. 40, 3169 (2005).Google Scholar
Wynblatt, P. and Ku, R.C.: Surface energy and solute strain energy effects in surface segregation. Surf. Sci. 65, 511 (1977).Google Scholar
Zhang, J., Dou, Y., and Zheng, Y.: Twin-boundary segregation energies and solute-diffusion activation enthalpies in Mg-based binary systems: A first-principles study. Scr. Mater. 80, 17 (2014).Google Scholar
Voronoi, G.F.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. J. Reine Angew. Math. 133, 97 (1907).Google Scholar
Plimpton, S.: Fast parallel algorisms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).Google Scholar
Wang, Y., Chen, L.Q., Liu, Z.K., and Mathaudhu, S.N.: First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scr. Mater. 62, 646 (2010).Google Scholar
Melchionna, S., Ciccotti, G., and Holian, B.L.: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533 (1993).Google Scholar
Li, J.: Atomeye: An efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11, 173 (2003).Google Scholar
Honeycutt, J.D. and Anderson, H.C.: Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).CrossRefGoogle Scholar
Choi, H.J., Kim, Y., Shin, J.H., and Bae, D.H.: Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer. Mater. Sci. Eng., A 527, 1565 (2010).Google Scholar
Li, B. and Ma, E.: Pyramidal slip in magnesium: Dislocations and stacking fault on the $\left\{ {10\bar 11} \right\}$ plane. Philos. Mag. 89, 1223 (2009).CrossRefGoogle Scholar
Yuasa, M., Hayashi, M., Mabuchi, M., and Chino, Y.: Atomic simulations of $\left\{ {10\bar 12} \right\}$ , $\left\{ {10\bar 11} \right\}$ twinning and $\left\{ {10\bar 12} \right\}$ detwinning in magnesium. J. Phys. Condens. Matter 26, 015003 (2014).Google Scholar
Di Tolla, F.D. and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).Google Scholar
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, K., and Gleiter, H.: Deformation-mechanism map for nanocrystalline aluminum by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004).Google Scholar
Mabuchi, M. and Higashi, K.: High-strain-rate plasticity in magnesium matrix composites containing Mg2Si particles. Philos. Mag. 74, 887 (1996).Google Scholar
Syed, B., Geng, J., Mishra, R.K., and Kumar, K.S.: [0001] Compression response at room temperature of single-crystal magnesium. Scr. Mater. 67, 700 (2012).Google Scholar
Swigenhoven, H.V., Derlet, P.M., and Froseth, A.G.: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (200−4).Google Scholar
Yuasa, M., Chino, Y., and Mabuchi, M.: Mechanical and chemical effects of solute elements on generalized stacking fault energy of Mg. J. Mater. Res. 29, 2576 (2014).Google Scholar
Ghazisaeidi, M., Hector, L.G. Jr., and Curtin, W.A.: Solute strengthening of twinning dislocations in Mg alloys. Acta Mater. 80, 278 (2014).Google Scholar
Luque, A., Ghazisaeidi, M., and Curtin, W.A.: A new mechanism for twin growth in Mg alloys. Acta Mater. 81, 442 (2014).Google Scholar
Du, N., Qi, Y., Krajewski, P.E., and Bower, A.F.: The effect of solute atoms on aluminum grain boundary sliding at elevated temperature. Metall. Mater. Trans. A 42, 651 (2011).CrossRefGoogle Scholar
Yuasa, M., Nakazawa, T., and Mabuchi, M.: Grain boundary sliding in pure and segregated bicrystals: A molecular dynamics and first principles study. J. Phys.: Condens. Matter 24, 265703 (2012).Google Scholar
Somekawa, H., Watanabe, H., and Mukai, T.: Effect of solute atoms on grain boundary sliding in magnesium alloys. Philos. Mag. 94, 1345 (2014).Google Scholar