Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T21:21:09.908Z Has data issue: false hasContentIssue false

The effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composites

Published online by Cambridge University Press:  03 March 2011

F. Jiang
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Z.B. Zhang
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
L. He
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
J. Sun*
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
H. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Z.F. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cu46Zr47Al7 bulk metallic glass (BMG) and its composites in plate with different thicknesses up to 6 mm were prepared by copper mold casting. Primary crystallizing phases with different microstructures and volume fractions could be obtained under different cooling rates, forming some composites with different mechanical properties. Under compression tests, the 2-mm-thick monolithic BMG has a yield strength of 1894 MPa and a high fracture strength of up to 2250 MPa at plastic strain up to 6%, exhibiting apparent “work-hardening” behavior. The 4-mm-thick Cu46Zr47Al7 BMG composite containing martensite phase yields at 1733 MPa and finally fails at 1964 MPa with a plastic strain of 3.7%.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kato, H., Hirano, T., Matsuo, A., Kawamura, Y., Inoue, A.: High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZRC particles. Scripta Mater. 43, 503 (2000).CrossRefGoogle Scholar
2.Choi-Yim, H., Busch, R., Koster, U., Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
3.Fan, C., Ott, R.T., Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
4.Lee, J.C., Kim, Y.C., Ahn, J.P., Kim, H.S., Lee, S.H., Lee, B.J.: Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite. Acta Mater. 52, 1525 (2004).CrossRefGoogle Scholar
5.Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
6.Bian, Z., Kato, H., Qin, C.L., Zhang, W., Inoue, A.: Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).CrossRefGoogle Scholar
7.He, G., Eckert, J., Loser, W., Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
8.He, G., Loser, W., Eckert, J.: In situ formed Ti-Cu-Ni-Sn-Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003).CrossRefGoogle Scholar
9.Hufnagel, T.C., Fan, C., Ott, R.T., Li, J., Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).CrossRefGoogle Scholar
10.Bian, Z., Chen, G.L., He, G., Hui, X.D.: Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Mater. Sci. Eng., A 316, 135 (2001).CrossRefGoogle Scholar
11.Kuhn, U., Eckert, J., Mattern, N., Schultz, L.: Microstructure and mechanical properties of slowly cooled Zr-Nb-Cu-Ni-Al composites with ductile bcc phase. Mater. Sci. Eng., A 375, 322 (2004).CrossRefGoogle Scholar
12.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
13.Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., Cheung, T.L., Shek, C.H.: Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).CrossRefGoogle Scholar
14.Yokoyama, Y., Fukaura, K., Inoue, A.: Cast structure and mechanical properties of Zr-Cu-Ni-Al bulk glassy alloys. Intermetallics 10, 1113 (2002).CrossRefGoogle Scholar
15.Jiang, F., Wang, Z.J., Zhang, Z.B., Sun, J.: Formation of Zr-based bulk metallic glasses from low purity materials by scandium addition. Scripta Mater. 53, 487 (2005).CrossRefGoogle Scholar
16.Xu, D.H., Duan, G., Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
17.Lohwongwatana, B., Schroers, J., Johnson, W.L.: Strain rate induced crystallization in bulk metallic glass-forming liquid. Phys. Rev. Lett. 96, 075503 (2006).CrossRefGoogle ScholarPubMed
18.Gloriant, T., Greer, A.L.: Al-based nanocrystalline composites by rapid solidification of Al-Ni-Sm alloys. Nanostruct. Mater. 10, 389 (1998).CrossRefGoogle Scholar
19.Chen, L.C., Spaepen, F.: Calorimetric evidence for the micro-quasicrystalline structure of “amorphous” Al-transition metal alloys. Nature 336, 6197 (1988).CrossRefGoogle Scholar
20.Jiang, F., Zhang, Z.B., Zhang, J., He, L., Sun, J.: Bending ductility and shear band spacing of copper-based metallic glass plate. Acta Metall. Sinica 41, 1031 (2005).Google Scholar
21.Konovalov, I.I., Komissarov, V.A., Maslov, A.A., Orlov, V.K.: Bulk amorphous plate production by a casting process. J. Non-Cryst. Solids 207, 536 (1996).CrossRefGoogle Scholar
22.Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scripta Mater. 54, 1145 (2006).CrossRefGoogle Scholar
23.Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., Schultz, J., Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).CrossRefGoogle Scholar
24.Ma, D., Chang, Y.A.: Competitive formation of ternary metallic glasses. Acta Mater. 54, 1927 (2006).CrossRefGoogle Scholar
25.Wang, D., Tan, H., Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system: A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).CrossRefGoogle Scholar