Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T02:37:15.941Z Has data issue: false hasContentIssue false

Effect of Dy on the dielectric nonlinear behavior of Mn and V-doped BaTiO3 multilayer ceramic capacitors

Published online by Cambridge University Press:  10 August 2015

Seok-Hyun Yoon*
Affiliation:
LCR Materials Group, Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd., Suwon, Gyunggi-Do 443-743, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of Dy-doping on the dielectric nonlinearity was investigated in Mn and V-doped BaTiO3 multilayer ceramic capacitors under the same grain size condition, which was described by the Preisach model utilizing the first order reversal curve (FORC) distribution. The dielectric constants in both low and high field region could be enhanced by the Dy-doping, and it was associated with the increase of both reversible and irreversible FORC distributions near zero bias, whereas there was little variation in the saturation polarization that scales to the magnitude of spontaneous polarization. These results demonstrate that both reversible and irreversible domain wall motions are enhanced by Dy-donor incorporation in BaTiO3 resulting in softening of the dielectrics and increase of dielectric constants, which is supposed to be caused by the decrease of the pinning sources such as defect dipoles formed by the oxygen vacancies and their interaction with the domain walls.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arlt, G., Hennings, D., and Dewith, G.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
Frey, M.H., Xu, Z., Han, P., and Payne, D.A.: The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206, 337 (1998).CrossRefGoogle Scholar
Hosina, T., Takizawa, K., Li, J., Kasama, T., Kakemoto, H., and Tsurumi, T.: Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys. 47, 7607 (2008).CrossRefGoogle Scholar
Zhao, Z., Buscaglia, V., Viviami, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., and Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004).CrossRefGoogle Scholar
Arlt, G.: The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 104, 217 (1990).CrossRefGoogle Scholar
Yoon, S.H., Kim, S.J., Kim, S.H., and Kim, D.Y.: Influence of excess Ba concentration on the dielectric nonlinearity in Mn and V-doped BaTiO3 multi layer ceramic capacitors. J. Appl. Phys. 114, 224103 (2013).CrossRefGoogle Scholar
Lee, S., Rossetti, G.A., Liu, Z.K., and Randall, C.A.: Intrinsic ferroelectric properties of the nonstoichiometric perovskite oxide. J. Appl. Phys. 105, 093519 (2009).CrossRefGoogle Scholar
Zhu, W., Fujii, I., Ren, W., and Mckinstry, S.T.: Domain wall motion in A and B site donor-doped Pb(Zr0.52Ti0.48)O3 films. J. Am. Ceram. Soc. 95, 2906 (2012).CrossRefGoogle Scholar
Garcia, J.E., Perez, R., Ochoa, D.A., Albareda, A., Lente, M.H., and Eiras, J.A.: Evaluation of domain wall motion in lead zirconate titanate ceramics by nonlinear response measurements. J. Appl. Phys. 103, 054108 (2008).CrossRefGoogle Scholar
Hennings, D.F.K.: Dielectric materials for sintering in reducing atmospheres. J. Eur. Ceram. Soc. 21, 1637 (2001).CrossRefGoogle Scholar
Kishi, H., Mizuno, Y., and Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).CrossRefGoogle Scholar
Randall, C.A.: Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J. Ceram. Soc. Jpn. 109, S2 (2001).CrossRefGoogle Scholar
Yoon, S.H., Lim, J.B., Kim, S.H., and Kim, D.Y.: Influence of Dy on the dielectric aging and thermally stimulated depolarization current in Dy and Mn-codoped BaTiO3 multilayer ceramic capacitor. J. Mater. Res. 28, 3252 (2013).CrossRefGoogle Scholar
Tsur, Y. and Randall, C.A.: How trivalent amphoteric dopants in BaTiO3 ceramics improve reliability of capacitors. AIP Conf. Proc. 535, 283 (2000).CrossRefGoogle Scholar
Arlt, G. and Pertsev, N.A.: Force constant and effective mass of 90° domain walls in ferroelectric ceramics. J. Appl. Phys. 70, 2283 (1991).CrossRefGoogle Scholar
Arlt, G. and Peusens, H.: The dielectric constant of coarse grained BaTiO3 ceramics. Ferroelectrics 48, 213 (1983).CrossRefGoogle Scholar
Herbiet, R., Tenbrock, H., and Arlt, G.: The aging behaviour of the complex material parameters ε, d and s in ferroelectric PZT ceramics. Ferroelectrics 76, 319326 (1987).CrossRefGoogle Scholar
Damjanovic, D.: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).CrossRefGoogle Scholar
Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).CrossRefGoogle Scholar
Mokry, P., Wang, Y.L., Tagantsev, A.K., Damjanovic, D., Stolichnov, I., and Setter, N.: Evidence for dielectric aging due to progressive 180° domain wall pinning in polydomain Pb(Zr0.45Ti0.55)O3 thin films. Phys. Rev. B 79, 054104 (2009).CrossRefGoogle Scholar
Robert, G., Damjanovic, D., and Setter, N.: Preisach distribution function approach to piezoelectric nonlinearity and hysteresis. J. Appl. Phys. 90, 2459 (2001).CrossRefGoogle Scholar
Pike, C.R., Roberts, A.P., and Verosub, K.L.: Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85, 6660 (1999).CrossRefGoogle Scholar
Fujii, I., Hong, E., and Trolier-Mckinstry, S.: Thickness dependence of dielectric nonlinearity of lead zirconate titanate films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57, 1717 (2010).CrossRefGoogle ScholarPubMed
Fujii, I., Ugorek, M., and Trolier-Mckinstry, S.: Grain size effect on the dielectric nonlinearity of BaTiO3 ceramics. J. Appl. Phys. 107, 104116 (2010).CrossRefGoogle Scholar
Fujii, I., Trolier-Mckinstry, S., and Nies, C.: Effect of grain size on dielectric nonlinearity in model BaTiO3-based multilayer ceramic capacitors. J. Am. Ceram. Soc. 94, 194 (2011).CrossRefGoogle Scholar
Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications, 1st ed. (Elsevier Academic Press, Amsterdam, The Netherlands, 2003).Google Scholar
Stancu, A., Ricinschi, D., Mitoseriu, L., Postolache, P., and Okuyama, M.: First-order reversal curves diagrams for the characterization of ferroelectric switching. Appl. Phys. Lett. 83, 3767 (2003).CrossRefGoogle Scholar
Han, J.H. and Kim, D.Y.: Determination of three-dimensional grain size distribution by linear intercept measurement. Acta Mater. 46, 2021 (1998).CrossRefGoogle Scholar
Kholkin, A.L.: Non-linear piezoelectric response in lead zirconate-titanate (PZT) films. Ferroelectrics 238, 235 (2000).CrossRefGoogle Scholar
Zhang, Q.M., Pan, W.Y., Jang, S.J., and Cross, L.E.: Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64, 6445 (1988).CrossRefGoogle Scholar
Bassiri Gharb, N. and Trolier-Mckinstry, S.: Dielectric nonlinearity of thin films with {100} and {111} crystallographic orientation. J. Appl. Phys. 97, 064106 (2005).CrossRefGoogle Scholar
Moulson, A.J. and Herbert, J.M.: Electroceramics, Ch. 2 and Ch. 5, 2nd ed. (John Wiley &Sons Ltd, West Sussex, England, 2003).CrossRefGoogle Scholar
Tsurumi, T., Yamamoto, Y., Kakemoto, H., Wada, S., Chazono, H., and Kishi, H.: Dielectric properties of BaTiO3–BaZrO3 ceramics under a high electric field. J. Mater. Res. 17, 755 (2002).CrossRefGoogle Scholar
Yoon, S.H., Park, J.S., Kim, C.H., and Kim, D.Y.: Difference between compositional and grain size effect on the dielectric nonlinearity of Mn and V-doped BaTiO3 multilayer ceramic capacitors. J. Appl. Phys. 115, 244101 (2014).CrossRefGoogle Scholar
Xue, L.A., Chen, Y., and Brook, R.J.: The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3. Mater. Sci. Eng. B1, 193 (1988).CrossRefGoogle Scholar
Lin, M.H. and Lu, H.Y.: Site-occupancy of Yttrium as a dopant in BaO-excess BaTiO3. Mater. Sci. Eng. A335, 101 (2002).CrossRefGoogle Scholar
Kim, J.H., Yoon, S.H., and Han, Y.H.: Effect of Y2O3 addition on electrical conductivity and dielectric properties of Ba-excess BaTiO3. J. Eur. Ceram. Soc. 27, 1113 (2007).CrossRefGoogle Scholar