Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:48:58.589Z Has data issue: false hasContentIssue false

Effect of composition on the thermal properties and spontaneous emission probabilities of Tm3+-doped TeO2–LiCl glass

Published online by Cambridge University Press:  31 January 2011

G. özen*
Affiliation:
Faculty of Science and Letters, Department of Physics, Istanbul Technical University, 80626, Maslak-Istanbul, Turkey
B. Demirata
Affiliation:
Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, 80626, Maslak-Istanbul, Turkey
M. L. öveçoğlu
Affiliation:
Faculty of Chemistry and Metallurgy, Department of Metallurgical and Materials Engineering, Istanbul Technical University, 80626, Maslak-Istanbul, Turkey
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

The effect of composition on the thermal properties and the spontaneous emission probabilities of various 0.5 mol% Tm2O3 containing (1 − x)TeO2 + (x)LiCl glasses were investigated using differential thermal analysis (DTA) and ultraviolet–visible– near-infrared (UV/VIS/NIR) absorption measurements. DTA curves of the samples were obtained in the 23–600 °C temperature range with a heating rate of 10 °C/min. The value of the glass transition temperature Tg and the crystallization temperatureTc were found to vary with the glass composition. Melting was not observed for the glasses containing less than 50 mol% LiCl in this temperature range. However, a melting peak was observed at Tm = 401 °C for the glasses having higher than 50 mol% LiCl, which were also found to be moisture-sensitive. Absorption measurements in the UV/VIS/NIR region were used to determine spontaneous emission probabilities for the 4f−4f transitions of Tm3+ ions. Six absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3, 3F4, 3H5, and 3H4 levels from the 3H6 ground level were observed. An integrated absorption cross section of each band, except that of 3H5 level, was found to vary with the glass composition. The role of the Judd–Ofelt parameters and therefore the effect of the glass composition on the radiative transition probabilities for the metastable levels of Tm3+ ions are discussed in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rodriguez, V.D., Lavin, V., Rodriguez-Mendoza, U.R., and Martin, I.R., Opt. Mater. 13, 1 (1999).Google Scholar
2.Tanabe, S., J. Non-Cryst. Solids 259, 1 (1999).CrossRefGoogle Scholar
3.Takebe, H., Yoshino, K., Murata, T., Morinaga, K., Hector, J., Brocklesby, W.S., Hewak, D.W., Wang, J., and Payne, D.N., Appl. Optics 36, 5839 (1997).CrossRefGoogle Scholar
4.Tanabe, S., Hirao, K. and Soga, N., J. Non-Cryst. Solids 122, 79 (1990).CrossRefGoogle Scholar
5.Stanworth, J.E., J. Soc. Glass Technol. 36, 217 (1952).Google Scholar
6.Stanworth, J.E., J. Soc. Glass Technol. 36, 425 (1954).Google Scholar
7.Stanworth, J.E., Nature 169, 581 (1952).Google Scholar
8.Ulrich, D.R., J. Am. Ceram. Soc. 47, 595 (1964).CrossRefGoogle Scholar
9.Wang, J.S., Vogel, E.M., and Snitzer, E., Opt. Mater. 3, 187 (1994).Google Scholar
10.Kim, S.H., Yoko, T., J. Am. Ceram. Soc. 78, 1061 (1995).CrossRefGoogle Scholar
11.Burger, H., Vogel, W., and Kozhukharov, V., Infrared Phys. 25, 395 (1985).Google Scholar
12.Özen, G., Denis, J-P., Genotelle, M., and Pellé, F., J. Phys.: Condens. Matter 7, 4325 (1995).Google Scholar
13.Takabe, H., Nageno, Y., and Morinaga, K., J. Am. Ceram. Soc. 77, 2132 (1994).Google Scholar
14.Judd, B.R., Phys. Rev. 127, 750 (1962).Google Scholar
15.Ofelt, G.S., J. Chem. Phys. 37, 511 (1962).CrossRefGoogle Scholar
16.Takabe, H., Nageno, Y., and Morinaga, K., J. Am. Ceram. Soc. 78, 1161 (1995).CrossRefGoogle Scholar
17.Oh, K., Kilian, A., and Morse, T.F., J. Non-Cryst. Solids 259, 10 (1999).Google Scholar
18.Wysocki, P., Rench, T., Andrejco, M., DiGiovanni, D., and Jayawardene, I., Optical Fiber Communication Conference (OFC) Vol. 6 (1997) OSA Technical Digest Series, Paper WF2.Google Scholar
19.Mori, A. and Ohishi, Y., Optical Fiber Communication Conference (OFC) Vol. 6 (1998) OSA Technical Digest Series, Paper WA1.Google Scholar
20.Kosuge, T., Bening, Y., Dimitriov, V., Sato, R., and Komatsu, T., J. Non-Cryst. Solids 242, 154 (1998).Google Scholar
21.Tanaka, K., Yoko, T., Yamada, H., and Kamiya, K., J. Non-Cryst. Solids 103, 250 (1988).Google Scholar
22.Sinclair, R.N., Wright, A.C., Bachra, B., Dimitriev, Y.B., Dimitriov, V.V., and Arnaudov, M.G., J. Non-Cryst. Solids 232–234, 38 (1998).Google Scholar
23.Reau, J.M., Tanguy, B., Portier, J., Rojo, J.M., Sana, J., and Herrero, M.P., J. de Physique IV 2, 165 (1992).Google Scholar
24.Neov, S., Gerasimova, I., Kozhukharov, V., and Marinov, M., J. Mater. Sci. 15, 1153 (1980).Google Scholar
25.Yakhkind, A.K., J. Am. Ceram. Soc. 49, 670 (1966).CrossRefGoogle Scholar
26.Kumar, V.R., Veeraiah, N., Rao, B.A. and Bhuddudu, S., J. Mater. Sci. 33, 2659 (1998).Google Scholar
27.Bahgdat, A.A., Shaisha, E.E., and Sabry, A.I., J. Mater. Sci. 22, 1323 (1987).CrossRefGoogle Scholar
28.Murata, T., Takebe, H., and Morinaga, K., J. Am. Ceram. Soc. 80, 249 (1998).CrossRefGoogle Scholar
29.Övečoğlu, M.L., Özen, G., Demirata, B., and Genč, A., J. Euro. Ceram. Soc. 21, 177 (2001).CrossRefGoogle Scholar
30.Johnson, P.A.V., Wright, A.C., Yarker, C.A., and Sinclair, R.N., J. Non-Cryst. Solids 81, 163 (1986).CrossRefGoogle Scholar
31.Oomen, E.W.J., J. Lumin. 50, 317 (1992).CrossRefGoogle Scholar
32.Lincoln, J.R., Brocklesby, W.S., Cusso, F., Townsend, J.E., Tropper, A.C., and Pearson, A., J. Lumin. 50, 297 (1991).Google Scholar
33.Kaminskii, A.A., Crystalline Lasers (CRC Press, Boca Raton, FL, 1996).Google Scholar