Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T12:43:53.880Z Has data issue: false hasContentIssue false

Dynamic characterization of Portevin–Le Chatelier instabilities occurring in depth-sensing microhardness tests

Published online by Cambridge University Press:  31 January 2011

G. Bérces
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, PázmányP.Sétány 1/A., Hungary
J. Lendvai
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, PázmányP.Sétány 1/A., Hungary
A. Juhász
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, PázmányP.Sétány 1/A., Hungary
N.Q. Chinh
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, PázmányP.Sétány 1/A., Hungary
Get access

Abstract

Characteristic properties of plastic instabilities were studied using depth-sensing microhardness experiments on an Al–3.3 wt.% Mg alloy and computer simulations based on a macroscopic dynamic model of the experimental setup. A stepwise increase was observed in the indentation depth versus load (d-F) curves measured in constant loading rate mode, indicating hardness oscillations around a nearly constant value of the conventional dynamic microhardness. These oscillations were correlated with plastic instabilities starting from the contact surface between the sample and the indenter head. Taking into account the experimentally determined connection between the hardness oscillations and the indentation velocity, a dynamic model was proposed for the characterization of instability steps.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Portevin, A. and Châtelier, F. Le, Trans. ASST 5, 457 (1924).Google Scholar
2.Penning, P., Acta Metall. 20, 1169 (1972).Google Scholar
3.McNelley, T.R. and Gates, S.F., Acta Metall. 26, 1605 (1978).CrossRefGoogle Scholar
4.Kubin, L.P. and Estrin, Y., Acta Metall. 33, 397 (1985).Google Scholar
5.Zbib, H.M. and Aifantis, E.C., Scripta Metall. 22, 1331 (1988).Google Scholar
6.Estrin, Y. and Kubin, L.P., J. Mech. Behavior Mater. 2, 255 (1989).Google Scholar
7.Haähner, P., Scripta Mater. 29, 1171 (1993).CrossRefGoogle Scholar
8.Jeanclaude, V. and Fressengeas, C., Scripta Mater. 29, 1177 (1993).Google Scholar
9.Lebyodkin, M., Brechet, Y., Estrin, Y., and Kubin, L.P., Acta Mater. 44, 4531 (1996).CrossRefGoogle Scholar
10.Lebyodkin, M., Brechet, Y., Estrin, Y., and Kubin, L.P., Phys. Rev. Letters 74, 4758 (1995).Google Scholar
11.McCormick, P.G., Acta Metall. 30, 2079 (1982).CrossRefGoogle Scholar
12.Chmelik, F., Balik, J., Lukac, P., Pink, E., and Cepova, M., Mater. Sci. Forum 217–222, 1019 (1996).CrossRefGoogle Scholar
13.Cáceres, C.H. and Rodriguez, A.H, Acta Metall. 35, 2851 (1987).CrossRefGoogle Scholar
14.Bérces, G., Chinh, N.Q., Juhász, A., and Lendvai, J., J. Mater. Res. 13, 1411 (1998).CrossRefGoogle Scholar
15.Bérces, G., Chinh, N.Q., Juhász, A., and Lendvai, J., Acta Mater. 46, 2029 (1998).Google Scholar
16.Chinh, N.Q., Csikor, F., Kovács, Zs., and Lendvai, J., J. Mater. Res. 15, 1037 (2000).CrossRefGoogle Scholar
17.Chinh, N.Q., Csikor, F., and Lendvai, J., Mater. Sci. Forum 331–337, 1007 (2000).CrossRefGoogle Scholar
18.Kovács, Zs., Chinh, N.Q., and Lendvai, J., J. Mater. Res. 16, 1171 (2001).Google Scholar
19.Chinh, N.Q., Horváth, Gy., Kovács, Zs., and Lendvai, J., Mater. Sci. Eng. A 324, 219 (2002).CrossRefGoogle Scholar
20.Kovács, Zs., Chinh, N.Q., Lendvai, J., and Vörös, G., Mater. Sci. Eng. A 325, 255 (2002).CrossRefGoogle Scholar
21.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, UK, 1951).Google Scholar
22.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
23.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
24.Malzbender, J. and With, G. de, J. Mater. Res. 17, 502 (2002).Google Scholar
25.Sakai, M. and Nakano, Y., J. Mater. Res. 17, 2161 (2002).Google Scholar
26.Sakai, M., J. Mater. Res. 18, 1631 (2003).Google Scholar
27.Pethica, J.B., Hutchings, R., and Oliver, W.C., Philos. Mag. A 48, 593 (1983).Google Scholar
28.Atkinson, M., J. Mater. Res. 10, 2908 (1995).Google Scholar
29.Mencik, J. and Swain, M.V., J. Mater. Res. 10, 1491 (1995).Google Scholar
30.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
31.Cottrell, A.H. and Jawson, M.A., Proc. R. Soc. (London) A199, 104 (1949).Google Scholar
32.Mulford, R.A. and Kocks, U.F., Acta Metall. 27, 1125 (1979).Google Scholar
33.McCormick, P.G., Acta Metall. 36, 3061 (1988).CrossRefGoogle Scholar