Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T22:42:46.690Z Has data issue: false hasContentIssue false

Diamond nucleation from the gas phase: A kinetic approach

Published online by Cambridge University Press:  31 January 2011

E. Molinari
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 1-00133 Roma, Italy
R. Polini
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 1-00133 Roma, Italy
V. Sessa
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 1-00133 Roma, Italy
M.L. Terranova
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 1-00133 Roma, Italy
M. Tomellini
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 1-00133 Roma, Italy
Get access

Abstract

Particle size distributions derived from SEM micrographs of well-separated diamond particles, deposited on Si(100) substrates by the hot filament CVD method, have been analyzed in connection with previous measurements of particle growth rates. Rates of nucleation have been obtained from this analysis in an extended range of deposition conditions. A previously developed nucleation model has been utilized, and the kinetic parameters provide a framework for modeling the nucleation process from the gas phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Molinari, E., Polini, R., Terranova, M.L., Ascarelli, P., and Fontana, S., J. Mater. Res. 7, 1778 (1992).CrossRefGoogle Scholar
2Frenklach, M. and Spear, K.E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
3Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991).CrossRefGoogle Scholar
4Tomellini, M., Polini, R., and Sessa, V., J. Appl. Phys. 70, 7573 (1991).CrossRefGoogle Scholar
5Avrami, M., J. Chem. Phys. 7, 1103 (1939); 8, 2 (1940); J. Frenkel, J. Chem. Phys. 7, 538 (1939).CrossRefGoogle Scholar
6Harris, S.J. and Martin, L. Robbin, J. Mater. Res. 5, 2313 (1990).CrossRefGoogle Scholar
7Ascarelli, P., Molinari, E., Polini, R., Sessa, V., Terranova, M. L., Capelli, E., and Fontana, S., in Diamond and Diamond-like Films and Coating, edited by Angus, J. C., Clausing, R. E., Horton, L. L., and Koidl, P. (Plenum Press, New York, 1991), p. 729.CrossRefGoogle Scholar
8Eto, H., Tamou, Y., Ohsawa, Y., and Kikuchi, N., Diamond and Related Materials 1, 373 (1992).CrossRefGoogle Scholar
9Molinari, E., Polini, R., and Tomellini, M., Appl. Phys. Lett. 61, 1287 (1992).CrossRefGoogle Scholar
10Iijima, S., Aikawa, Y., and Baba, K., J. Mater. Res. 6, 1491 (1991).CrossRefGoogle Scholar
11Yarbrough, W.A., Applications of Diamond Films and Related Materials, edited by Tseng, V., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier, Amsterdam, 1991), p. 25.Google Scholar
12Molinari, E., Polini, R., and Tomellini, M., J. Mater. Res. 8, 798 (1993).CrossRefGoogle Scholar
13Tomellini, M., in preparation.Google Scholar
14Polini, R., J. Appl. Phys. 72, 2517 (1992).CrossRefGoogle Scholar
15Polini, R. and Molinari, E., unpublished research.Google Scholar