Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T23:37:06.014Z Has data issue: false hasContentIssue false

Determination of the energy release rate in the interfacial delamination of silicon nitride film on gallium arsenide substrate via nanoindentation

Published online by Cambridge University Press:  20 March 2014

Mingyuan Lu
Affiliation:
School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Queensland 4072, Australia
Han Huang*
Affiliation:
School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Queensland 4072, Australia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanoindentation was performed to study the interfacial delamination of SiN/GaAs film/substrate structures, and to determine the adhesion properties of the interface. A sequential dual-indentation approach was developed and the tests were carefully designed to induce interfacial delamination, but avoid the occurrence of the film's through-thickness fracture or buckling. A clamped circular plate model was used to approximate the elastic deflection of the detached film and hence the delamination area. The Griffith energy balance was then used to compute the energy release associated with the delamination. The energy release rate, Gin, calculated was found to be independent on the testing conditions, which agrees with the fundamental assumption of the Griffith energy concept.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, F.W., Le, H.Q., Diadiuk, V., Hollis, M.A., Calawa, A.R., Gupta, S., Frankel, M., Dykaar, D.R., Mourou, G.A., and Hsiang, T.Y.: Picosecond GaAs-based photoconductive optoelectronic detectors. Appl. Phys. Lett. 54(10), 890 (1989).CrossRefGoogle Scholar
Lam, D.K.W. and Macdonald, R.I.: GaAs optoelectronic mixer operation at 4.5 GHz. IEEE Trans. Electron Devices 31(12), 1766 (1984).CrossRefGoogle Scholar
Hallakoun, I., Toledo, I., Kaplun, J., Bunin, G., Leibovitch, M., and Shapira, Y.: Critical dimension improvement of plasma enhanced chemical vapor deposition silicon nitride thin films in GaAs devices. Mater. Sci. Eng., B 102(1–3), 352 (2003).CrossRefGoogle Scholar
Gioti, M., Logothetidis, S., and Charitidis, C.: Stress relaxation and stability in thick amorphous carbon films deposited in layer structure. Appl. Phys. Lett. 73(2), 184 (1998).CrossRefGoogle Scholar
Chang, S.Y., Tsai, H.C., Chang, J.Y., Lin, S.J., and Chang, Y.S.: Analyses of interface adhesion between porous SiOCH low-k film and SiCN layers by nanoindentation and nanoscratch tests. Thin Solid Films 516(16), 5334 (2008).CrossRefGoogle Scholar
Chang, E.Y., Cibuzar, G.T., Vanhove, J.M., Nagarajan, R.M., and Pande, K.P.: GaAs device passivation using sputtered silicon-nitride. Appl. Phys. Lett. 53(17), 1638 (1988).CrossRefGoogle Scholar
Yeap, K.B., Zeng, K.Y., Jiang, H.Y., Shen, L., and Chi, D.Z.: Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique. J. Appl. Phys. 101(12), 123531 (2007).CrossRefGoogle Scholar
Singh, R.K., Tilbrook, M.T., Xie, Z.H., Bendavid, A., Martin, P.J., Munroe, P., and Hoffman, M.: Contact damage evolution in diamondlike carbon coatings on ductile substrates. J. Mater. Res. 23(1), 27 (2008).CrossRefGoogle Scholar
Rosenfeld, L.G., Ritter, J.E., Lardner, T.J., and Lin, M.R.: Use of the microindentation technique for determining interfacial fracture energy. J. Appl. Phys. 67(7), 3291 (1990).CrossRefGoogle Scholar
Perry, A.J.: Scratch adhesion testing of hard coatings. Thin Solid Films 107(2), 167 (1983).CrossRefGoogle Scholar
Volinsky, A.A., Moody, N.R., and Gerberich, W.W.: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50(3), 441 (2002).CrossRefGoogle Scholar
Zhang, S., Wang, Y.S., Zeng, X.T., Khor, K.A., Weng, W.J., and Sun, D.E.: Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films 516(16), 5162 (2008).CrossRefGoogle Scholar
Jacobsson, R.: Measurement of the adhesion of thin films. Thin Solid Films 34(2), 191 (1976).CrossRefGoogle Scholar
Dauskardt, R., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61(1), 141 (1998).CrossRefGoogle Scholar
Zhang, S. and Zhang, X.M.: Toughness evaluation of hard coatings and thin films. Thin Solid Films 520(7), 2375 (2012).CrossRefGoogle Scholar
Lawn, B.R., Evans, A.G., and Marshall, D.B.: Elastic-plastic indentation damage in ceramics-the medium-radial crack system. J. Am. Ceram. Soc. 63(9–10), 574 (1980).CrossRefGoogle Scholar
Marshall, D.B., Chiang, S.S., Evans, A.G., and Lawn, B.R.: Elastic-plastic indentation in ceramics-the lateral crack system. Am. Ceram. Soc. Bull. 60(3), 384 (1981).Google Scholar
Alvarado-Rivera, J., Muñoz-Saldaña, J., and Ramírez-Bon, R.: Determination of fracture toughness and energy dissipation of SiO2-poly(methyl metacrylate) hybrid films by nanoindentation. Thin Solid Films 519(16), 5528 (2011).CrossRefGoogle Scholar
Xie, H.T. and Huang, H.: Characterization of the interfacial strength of SiNx/GaAs film/substrate systems using energy balance in nanoindentation. J. Mater. Res. 28(22), 3137 (2013).CrossRefGoogle Scholar
Anthony, C. and Fischer-Cripps, A.C.: Nanoindentation (Springer-Verlag, New York, 2004).Google Scholar
Hainsworth, S.V., McGurk, M.R., and Page, T.F.: The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 102(1–2), 97 (1998).CrossRefGoogle Scholar
Wei, P.J., Liang, W.L., Ai, C.F., and Lin, J.F.: A new method for determining the strain energy release rate of an interface via force-depth data of nanoindentation tests. Nanotechnology 20(2), 025701 (2009).CrossRefGoogle ScholarPubMed
Wei, P.J., Chio, S.B., Liang, W.L., and Lin, J.F.: Determining buckling strain energy release rate through indentation-induced delamination. Thin Solid Films 519(15), 4889 (2011).CrossRefGoogle Scholar
Chen, J.J. and Bull, S.J.: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44(3), 034001 (2011).CrossRefGoogle Scholar
Chen, J.J. and Bull, S.J.: Assessment of the adhesion of ceramic coatings. Adv. Sci. Technol. 45, 1299 (2006).CrossRefGoogle Scholar
Chen, J. and Bull, S.J.: Indentation fracture and toughness assessment for thin optical coatings on glass. J. Phys. D: Appl. Phys. 40(18), 5401 (2007).CrossRefGoogle Scholar
Lu, M.Y., Xie, H.T., Huang, H., Zou, J., and He, Y.H.: Nanoindentation induced delamination of PECVD silicon nitride thin film on GaAs substrate. J. Mater. Res. 28(8), 1047 (2013).CrossRefGoogle Scholar
Cho, S-J., Lee, K-R., Yong Eun, K., Hee Hahn, J., and Ko, D-H.: Determination of elastic modulus and Poisson’s ratio of diamond-like carbon films. Thin Solid Films 341(1–2), 207 (1999).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).CrossRefGoogle Scholar
Huang, H., Winchester, K.J., Suvorova, A., Lawn, B.R., Liu, Y., Hu, X.Z., Dell, J.M., and Faraone, L.: Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng., A 435, 453 (2006).CrossRefGoogle Scholar
Huang, H., Winchester, K., Liu, Y., Hu, X.Z., Musca, C.A., Dell, J.M., and Faraone, L.: Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry-Perot optical filters. J. Micromech. Microeng. 15(3), 608 (2005).CrossRefGoogle Scholar
Jung, Y.G., Lawn, B.R., Martyniuk, M., Huang, H., and Hu, X.Z.: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19(10), 3076 (2004).CrossRefGoogle Scholar
Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Mechanical deformation of InP and GaAs by spherical indentation. Appl. Phys. Lett. 78(21), 3235 (2001).CrossRefGoogle Scholar
Lloyd, S.J., Molina-Aldareguia, J.M., and Clegg, W.J.: Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16(12), 3347 (2001).CrossRefGoogle Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1895).Google Scholar
Chen, J.J.: Indentation-based methods to assess fracture toughness for thin coatings. J. Phys. D: Appl. Phys. 45(20), (2012).CrossRefGoogle Scholar
Ma, L., Morris, D.J., Jennerjohn, S.L., Bahr, D.F., and Levine, L.E.: The role of probe shape on the initiation of metal plasticity in nanoindentation. Acta Mater. 60(12), 4729 (2012).CrossRefGoogle Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T., and Michael, J.: TEM sample preparation and FIB-induced damage. MRS Bull. 32(5), 400 (2007).CrossRefGoogle Scholar
Bei, H., Shim, S., Miller, M.K., Pharr, G.M., and George, E.P.: Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91(11), 111915 (2007).CrossRefGoogle Scholar
Pobedinskas, P., Bolsée, J-C., Dexters, W., Ruttens, B., Mortet, V., D'Haen, J., Manca, J.V., and Haenen, K.: Thickness dependent residual stress in sputtered AlN thin films. Thin Solid Films 522(0), 180 (2012).CrossRefGoogle Scholar
Zhang, X.C., Liu, C.J., Xuan, F.Z., Wang, Z.D., and Tu, S.T.: Effect of residual stresses on the strength and fracture energy of the brittle film: Multiple cracking analysis. Comput. Mater. Sci. 50(1), 246 (2010).CrossRefGoogle Scholar
Nazarpour, S. and Cirera, A.: Variation of adhesive force at the interface of Pd and SrTiO3 as a consequence of residual stresses. J. Phys. D: Appl. Phys. 44 (3), 034002 (2011).CrossRefGoogle Scholar
Volinsky, A.A., Vella, J.B., and Gerberich, W.W.: Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429(1–2), 201 (2003).CrossRefGoogle Scholar
Evans, A.G. and Hutchinson, J.W.: On the mechanics of delamination and spalling in compressed films. Int. J. Solids Struct. 20(5), 455 (1984).CrossRefGoogle Scholar
Evans, A.G. and Hutchinson, J.W.: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43(7), 2507 (1995).CrossRefGoogle Scholar
Khanna, V.K.: Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices. J. Phys. D: Appl. Phys. 44(3), (2011).CrossRefGoogle Scholar