Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:56:08.588Z Has data issue: false hasContentIssue false

Depth profiles of Li ions implanted in the photoresist AZ111

Published online by Cambridge University Press:  31 January 2011

R. B. Guimarães
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, 91500 Porto Alegre, RS, Brazil
L. Amaral
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, 91500 Porto Alegre, RS, Brazil
M. Behar
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, 91500 Porto Alegre, RS, Brazil
D. Fink
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, 91500 Porto Alegre, RS, Brazil
F. C. Zawislak
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, 91500 Porto Alegre, RS, Brazil
Get access

Abstract

Depth profiles of 30–150 keV6Li implanted into the photoresist AZ111 have been analyzed through the 6Li(n,a)t nuclear reaction using thermal neutrons. As was found recently for 10B and 19F implanted into the same material, at certain threshold implantation energy the Li ions also split up into a regular and a nonregular distribution. This energy differs from the energies found for 10B and 19F, but at the threshold the electronic stopping power has the same value of about 20 eV/Å in the three cases. The nonregular Li fraction, typically around 10% of the implanted atoms, redistributes according to the TRIM code predicted profile of electronic energy transfer. The regular component exhibits a range profile that is well described by the TRIM code particle distribution predictions. The analysis of the B, F, and Li data shows that there is an approximately linear relation between the nonregular fraction of ions and the density of total deposited energy.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fink, D., Biersack, J. P., Chen, J. T., Stadele, M., Tjang, K., Behar, M., Olivieri, C. A., and Zawislak, F. C., J. Appl. Phys. 58, 668 (1985).CrossRefGoogle Scholar
2Guimaraes, R. B., Behar, M., Livi, R. P., Souza, J. P. de, Amaral, L., Zawislak, F. C., Fink, D., and Biersack, J. P., Nucl. Instrum. Methods B 19/20, 882 (1987).CrossRefGoogle Scholar
3Fink, D., Muller, M., Stettmer, U., Behar, M., Fichtner, P. F. P., Zawislak, F. C., and Koul, S., Nucl. Instrum. Methods B 32, 150 (1988).CrossRefGoogle Scholar
4Guimaraes, R. B., Behar, M., Livi, R. P., Souza, J. P. de, Zawislak, F. C., Fink, D., and Biersack, J. P., J. Appl. Phys. 60, 1322 (1986).CrossRefGoogle Scholar
5Guimaraes, R. B., Amaral, L., Behar, M., Fichtner, P. F. P., Zawislak, F. C., and Fink, D., J. Appl. Phys. 63, 2083 (1988).CrossRefGoogle Scholar
6Ziegler, J. F., Biersack, J. P., and Littmark, U., in The Stopping and Range of Ions into Solids, edited by Ziegler, J. F. (Pergamon, New York, 1985), Vol. 1.Google Scholar
7Santry, D. C. and Werner, R. D., Nucl. Instrum. Methods 178, 523 (1980).CrossRefGoogle Scholar
8Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
9Brandt, W. and Kitagawa, M., Phys. Rev. B 25, 5631 (1982).CrossRefGoogle Scholar
10Chu, W. K., Mayer, J. W., and Nicolet, M. A., in Backscattering Spectrometry (Education Academic, New York, 1978).CrossRefGoogle Scholar
11Venkatesan, T., Calcagno, L., Elman, B. S., and Foti, G., in Ion Implantation in Insulators, edited by Mazzoldi, P. (North-Holland, Amsterdam, 1987), Chap. 8.Google Scholar
12Biersack, J. P., Z. Phys. A 308, 95 (1982).CrossRefGoogle Scholar