Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T09:24:29.905Z Has data issue: false hasContentIssue false

Crystal structure and dielectric property of epitaxially grown (Ba, Sr)TiO3 thin film prepared by molecular chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Hiroshi Funakubo
Affiliation:
Department of Inovative and Engineering Materials, Interdisciplinary Graduated School of Science and Engineering, Tokyo Institute of Technology, 4259, Nagtsuda-cho, Midori-ku, Yokohama, 226 Japan
Yutaka Takeshima
Affiliation:
Functional Materials Research Development, R & D Group, Murata Mag. Co. Ltd., Yasu-gun, Siga, 520–23, Japan
Daisuke Nagano
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2–12–1, Meguro-ku, O-okayama, Tokyo, 152, Japan
Kazuo Shinozaki
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2–12–1, Meguro-ku, O-okayama, Tokyo, 152, Japan
Nobuyasu Mizutani
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2–12–1, Meguro-ku, O-okayama, Tokyo, 152, Japan
Get access

Abstract

Epitaxially grown (Ba, Sr)TiO3 thin films were prepared on (100)MgO and (100)Pt ║ (100)MgO substrates by molecular chemical vapor deposition (MOCVD). The lattice parameter increased with increasing Ba/(Ba + Sr) ratio in the film and was higher than the reported value for bulk (Ba, Sr)TiO3. The dielectric constant at room temperature reached the maximum value at a lower Ba/(Ba + Sr) ratio compared to the reported one for bulk (Ba, Sr)TiO3. The temperature showing the maximum dielectric constant was higher than the reported value for bulk (Ba, Sr)TiO3. These results can be explained by the compressive stress applied to the film under the cooling process after the deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Koyama, K., Sakuma, T., Yamamichi, S., Watanabe, H., Aoki, H., Ohya, S., Miyasaka, Y., and Kikkawa, T., Proc. IEDM (1991), p. 823.Google Scholar
2.Abe, K. and Komatsu, S., J. Appl. Phys. 77, 64616465 (1995).CrossRefGoogle Scholar
3.Kim, T. S., Kim, C. H., and Oh, M. H., J. Appl. Phys. 75, 79988003 (1994).CrossRefGoogle Scholar
4.Sone, S., Yabuta, H., Kato, Y., Iizuka, T., Yamamichi, S., Yamaguchi, H., Lesaicherre, P. Y., Nishimoto, S., and Yoshida, M., Jpn. J. Appl. Phys. 35, 50895093 (1996).CrossRefGoogle Scholar
5.Buskirk, P. C. V., Bilodeau, S. M., Roeder, J. F., and Kirlin, P. S., Jpn. J. Appl. Phys. 35, 25202525 (1996).CrossRefGoogle Scholar
6.Chern, C. S., Liang, S., Shi, Z. Q., Yoon, S., Safari, A., Lu, P., Kear, B. H., Goodreau, B. H., Marks, T. J., and Hou, S. Y., Appl. Phys. Lett. 64, 31813183 (1994).CrossRefGoogle Scholar
7.Yamamuka, M., Kawahara, T., Yuuki, A., and Ono, K., Jpn. J. Appl. Phys. 35, 25302535 (1996).CrossRefGoogle Scholar
8.Otsu, M., Funakubo, H., Hioki, T., Akai, T., Shinozaki, K., and Mizutani, N., Nihon Kagakukai-shi, 789795 (1995) (in Japanese).Google Scholar
9.Funakubo, H., Imashita, K., Kieda, N., and Mizutani, N., Nippon Seramikkusu Ronbunshi (J. Ceram. Soc. Jpn.) 99, 248250 (1991) (in English).CrossRefGoogle Scholar
10.Funakubo, H., Imashita, K., and Mizutani, N., Nippon Seramikkusu Ronbunshi (J. Ceram. Soc. Jpn.) 99, 1169–1171 (in English).CrossRefGoogle Scholar
11.Funakubo, H., Inagaki, Y., Shinozaki, K., and Mizutani, N., J. CVD 1, 7386 (1992).Google Scholar
12.Funakubo, H., Nagano, D., Shinozaki, K., and Mizutani, N., Jpn. J. Appl. Phys. 36, 58795884 (1997).CrossRefGoogle Scholar
13.Yamaguchi, H., Matsubara, S., Takemura, K., and Miyasaka, Y., Proc. Int. Symp. Appl. Ferroelectrics (1992) p. 285288.Google Scholar
14.Kobayashi, H. and Kobayashi, T., Jpn. J. Appl. Phys. 33, L533–L536 (1994).Google Scholar
15.Knauss, L. A., Pond, J. M., Horwitz, S., Chrisey, D. B., Muller, C. H., and Treece, R., Appl. Phys. Lett. 69, 2527 (1996).CrossRefGoogle Scholar
16.McQuarrie, M., J. Am. Ceram. Soc. 38 444449 (1995).CrossRefGoogle Scholar
17.Yoon, J. G., Yoon, S. G., Lee, W. J., and Kim, H. G., Korean J. Ceram. 1 (4), 204208 (1995).Google Scholar
18.Otsu, M., Funakubo, H., Shinozaki, K., and Mizutani, N., Trans. Mater. Res. Soc. Jpn. 14B, 16551658 (1994).Google Scholar
19.Funakubo, H., Otsu, M., Inagaki, Y., Shinozaki, K., and Mizutani, N., J. Mater. Sci. Lett. 14, 629632 (1995).CrossRefGoogle Scholar
20.Tseng, T. F., Yeh, M. H., Liu, K. S., and Lin, I. N., J. Appl. Phys. 80, 49844989 (1996).CrossRefGoogle Scholar
21.Nagano, D., Funakubo, H., Shinozaki, K., and Mizutani, N., J. Mater. Soc. Jpn. 33, 175176 (1996) (in Japanese).Google Scholar
22.Yamauchi, S., Yabuta, H., Sakuma, T., and Miyasaka, Y., Appl. Phys. Lett. 64, 16441647 (1994).CrossRefGoogle Scholar
23.Yamaguchi, H., Lesaicherre, P. Y., Sakuma, T., Miyasaka, Y., Ishitani, A., and Yoshida, M., Jpn. J. Appl. Phys. 32, 40694073 (1993).CrossRefGoogle Scholar
24.Funakubo, H., Hioki, T., Otsu, M., Shinozaki, K., and Mizutani, N., Jpn. J. Appl. Phys. 32, 41754178 (1993).CrossRefGoogle Scholar
25.Yamauchi, S., Sakuma, T., Hase, T., and Miyasaka, Y., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), pp. 297302.Google Scholar
26.Sawaguchi, E., Kikuchi, A., and Kodera, Y., J. Phys. Soc. Jpn. 17, 1666 (1962).CrossRefGoogle Scholar
27.Matsubara, S., Yamauchi, S., Yamaguchi, H., Sakuma, T., and Miyasaka, Y., Proc. Div. Meet. Electroceram., 19–20 (1990).Google Scholar
28.Syamaprasad, U., Galgali, R. K., and Mohanty, B. C., Mater. Lett. 7, 197200 (1983).CrossRefGoogle Scholar
29.Desu, S. B., J. Electrochem. Soc. 140, 29812987 (1993).CrossRefGoogle Scholar
30.Rossetti, G. A., Cross, L. E., and Kushida, K., Appl. Phys. Lett. 59 (20), 25242526 (1991).CrossRefGoogle Scholar
31.Funakubo, H., Imashita, K., Shinozaki, K., and Mizutani, N., J. Ceram. Soc. Jpn. 1023, 114118 (1994) (in English).CrossRefGoogle Scholar
32.Mukhortov, V. M., Golovko, Y. I., Alyoshin, V. A., Sviridov, E. V., Mukhortov, V. M., Dudkevich, V. P., and Fesenko, E. S., Ferroelectrics 37, 737740 (1981).CrossRefGoogle Scholar
33.Carroll, K. R., Pond, J. M., Chrisey, D. B., Horwits, J. S., and Leuchtner, R. E., Appl. Phys. Lett. 62, 18451847 (1993).CrossRefGoogle Scholar
34.Mehrotra, V., Kaplan, S., Sievers, A. J., and Giannelis, E. P., J. Mater. Res. 8, 12091212 (1993).CrossRefGoogle Scholar
35.Smolenski, G. A. and Rozgachev, K. I., Zh. Tekh. Fiz. 24, 1751 (1954).Google Scholar
36.Spitzer, W. G., Miller, R. C., Kleinman, D. A., and Horth, J. E., Phys. Rev. 126, 17101721 (1962).CrossRefGoogle Scholar
37.Kim, T. S., Oh, M. H., and Kim, C. H., Thin Solid Films 254, 273277 (1995).CrossRefGoogle Scholar