Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:26:33.607Z Has data issue: false hasContentIssue false

Cracking of porcelain coatings bonded to metal substrates of different modulus and hardness

Published online by Cambridge University Press:  31 January 2011

Hong Zhao
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Australia, Nedlands, WA 6907, Australia
Xiaozhi Hu
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Australia, Nedlands, WA 6907, Australia
Mark B. Bush
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Australia, Nedlands, WA 6907, Australia
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

A preceding study of contact damage in a bilayer system consisting of a porcelain coating on a stiff Pd-alloy substrate is here expanded to investigate the role of substrate modulus and hardness. Bilayers are made by fusing the same dental porcelain onto Co-, Pd-, and Au-alloy metal bases. Indentations are made on the porcelain surfaces using spheres of radii 2.38 and 3.98 mm. Critical loads to initiate cone fracture at the top surface of the porcelain and yield in the substrate below the contact are measured as a function of porcelain thickness. Radial cracks form at the lower surface of the coating once the substrate yield is well developed. By virtue of its controlling role in the metal yield process, substrate hardness is revealed to be a key material parameter—substrate modulus plays a secondary role. A simple elasticitybased analysis for predetermining critical loads for a given brittle/plastic bilayer system is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kelly, J.R., Ann. Rev. Mater. Sci. 27, 443 (1997).CrossRefGoogle Scholar
2.Kelly, J.R., J. Prosthet. Dent. 81, 652 (1999).CrossRefGoogle Scholar
3.Knight, J.C., Page, T.F., and Hutchings, I.M., Thin Solid Films 177, 117 (1989).CrossRefGoogle Scholar
4.Komvopolous, K., ASME J. Tribology 111, 430 (1989).CrossRefGoogle Scholar
5.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).CrossRefGoogle Scholar
6.Diao, D.F., Kato, K., and Hokkirigawa, K., Trans. ASME J. Tribology 116, 860 (1994).CrossRefGoogle Scholar
7.Sun, Y., Bloyce, A. and Bell, T., Thin Solid Films 271, 122 (1995).CrossRefGoogle Scholar
8.An, L., Chan, H.M., Padture, N.P., and Lawn, B.R., J. Mater. Res. 11, 204 (1996).CrossRefGoogle Scholar
9.Fischer-Cripps, A.C., Lawn, B.R., Pajares, A., and Wei, L., J. Am. Ceram. Soc. 79, 2619 (1996).CrossRefGoogle Scholar
10.Zhao, H., Hu, X.Z., Bush, M.B., and Lawn, B.R., J. Mater. Res. 15, 676 (2000).CrossRefGoogle Scholar
11.Chai, H., Lawn, B.R., and Wuttiphan, S., J. Mater. Res. 14, 3805 (1999).CrossRefGoogle Scholar
12.Tabor, D., Hardness of Metals (Clarendon, Oxford, U.K. 1951).Google Scholar
13.Prakash, O., Sarkar, P., and Nicholson, P.S., J. Am. Ceram. Soc. 78, 1125 (1995).CrossRefGoogle Scholar
14.Wang, H. and Hu, X.Z., J. Am. Ceram. Soc. 79, 553 (1996).CrossRefGoogle Scholar
15.Peterson, I.M., Pajares, A., Lawn, B.R., Thompson, V.P., and Rekow, E.D., J. Dent. Res. 77, 589 (1998).CrossRefGoogle Scholar
16.Guiberteau, F., Padture, N.P., and Lawn, B.R., J. Am. Ceram. Soc. 77, 1825 (1994).CrossRefGoogle Scholar
17.Cai, H., Stevens Kalceff, M.A., and Lawn, B.R., J. Mater. Res. 9, 762 (1994).CrossRefGoogle Scholar
18.Schwarzer, N., Richter, F., and Hecht, G., Surf. Coat. Technol. 114, 292 (1999).CrossRefGoogle Scholar
19.Johnson, K.L., Contact Mechanics (Cambridge University Press, London, U.K. 1985).CrossRefGoogle Scholar
20.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).CrossRefGoogle Scholar
21.Frank, F.C. and Lawn, B.R., Proc. Roy. Soc. Lond. A 299, 291 (1967).Google Scholar
22.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).CrossRefGoogle Scholar
23.Timoshenko, S. and Goodier, J.N., Theory of Elasticity (McGraw-Hill, New York, 1951), Ch. 8.Google Scholar
24.Chai, H. and Lawn, B.R., J. Mater. Res. 15, 1017 (2000).CrossRefGoogle Scholar
25.Lawn, B.R., Lee, K.S., Chai, H., Pajares, A., Kim, D.K., Wuttiphan, S., Peterson, I.M., and Hu, X., Advanced Engineering Materials 2, 745 (2000).3.0.CO;2-E>CrossRefGoogle Scholar
26.Wuttiphan, S., Ph.D. Thesis, University of Maryland, College Park, MD, 1997.Google Scholar
27.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., and Lawn, B.R., J. Mater. Res. 16, 115 (2001).CrossRefGoogle Scholar
28.Pajares, A., Wei, L., Lawn, B.R., and Berndt, C.C., J. Am. Ceram. Soc. 79, 1907 (1996).CrossRefGoogle Scholar