Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:21:26.242Z Has data issue: false hasContentIssue false

Correlation of the resistive switching and polarization switching in zinc oxide thin films using scanning probe microscopy techniques

Published online by Cambridge University Press:  29 October 2015

Juanxiu Xiao
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
Kaiyang Zeng*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
Lai-Mun Wong
Affiliation:
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 117602, Singapore
Shijie Wang
Affiliation:
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 117602, Singapore
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, resistive switching (RS), polarization switching, and charge distribution under DC bias in undoped ZnO thin films are studied by applying scanning probe microscopy (SPM) techniques on the same location. The techniques include Piezoresponce Force Microscopy, Kelvin Probe Force Microscopy, and Conductive Atomic Force Microscopy. The effects of oxygen partial pressure during the film deposition are also investigated. The results show that high resistance state (HRS) is accompanied by the polarization switching and charges storage. By comparing the SPMs results from the same location, it is found that the oxygen partial pressure during film deposition is an important factor over the holes injection during the poling processes in the HRS. On the other hand, the low resistance state (LRS) may be dominated by the electrons injection. Based on these findings, the energy band diagrams in the Pt-tip/ZnO-film/Pt-bottom-electrode structure with the applications of the external biases are illustrated schematically. This study also proposes a more persuasive mechanism of RS in ZnO films.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., and Hwang, C.S.: Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 75 (7), 076502 (2012).CrossRefGoogle ScholarPubMed
Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11(6), 28 (2008).CrossRefGoogle Scholar
Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N.D., Barthelemy, A., and Bibes, M.: Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460(7251), 81 (2009).CrossRefGoogle ScholarPubMed
Nagashima, K., Yanagida, T., Oka, K., Kanai, M., Klamchuen, A., Kim, J.S., Park, B.H., and Kawai, T.: Intrinsic mechanisms of memristive switching. Nano Lett. 11(5), 2114 (2011).CrossRefGoogle ScholarPubMed
Bibes, M. and Barthelemy, A.: Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 7(6), 425 (2008).CrossRefGoogle ScholarPubMed
Scott, J.F. and Paz de Araujo, C.A.: Ferroelectric memories. Science 246(4936), 1400 (1989).CrossRefGoogle ScholarPubMed
Fontana, R.E. and Hetzler, S.R.: Magnetic memories: Memory hierarchy and processing perspectives (invited). J. Appl. Phys. 99(8), 08N902 (2006).CrossRefGoogle Scholar
Lee, M.H. and Hwang, C.S.: Resistive switching memory: Observations with scanning probe microscopy. Nanoscale 3(2), 490 (2011).CrossRefGoogle ScholarPubMed
Parkin, S.S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B., Scheuerlein, R.E., O'Sullivan, E.J., Brown, S.L., Bucchigano, J., Abraham, D.W., Lu, Y., Rooks, M., Trouilloud, P.L., Wanner, R.A., and Gallagher, W.J.: Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. 85(8), 5828 (1999).CrossRefGoogle Scholar
Beinik, I., Kratzer, M., Wachauer, A., Wang, L., Lechner, R.T., Teichert, C., Motz, C., Anwand, W., Brauer, G., Chen, X.Y., Hsu, X.Y., and Djurišić, A.B.: Electrical properties of ZnO nanorods studied by conductive atomic force microscopy. J. Appl. Phys. 110(5), 052005 (2011).CrossRefGoogle Scholar
Chang, W-Y., Lin, C-A., He, J-H., and Wu, T-B.: Resistive switching behaviors of ZnO nanorod layers. Appl. Phys. Lett. 96(24), 242109 (2010).CrossRefGoogle Scholar
Xiao, J.X., Ong, W.L., Guo, Z., Ho, G.W., and Zeng, K.Y.: Resistive switching and polarization reversal of Hydrothermal-method-grown undoped zinc oxide nanorods by using scanning probe microscopy techniques. ACS Appl. Mater. Interfaces 7(21), 11412 (2015).CrossRefGoogle ScholarPubMed
Song, J., Zhang, Y., Xu, C., Wu, W., and Wang, Z.L.: Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage. Nano Lett. 11(7), 2829 (2011).CrossRefGoogle ScholarPubMed
Wang, J., Song, Z., Xu, K., and Liu, M.: Rectifying switching characteristics of Pt/ZnO/Pt structure based resistive memory. J. Nanosci. Nanotechnol. 10(11), 7088 (2010).CrossRefGoogle ScholarPubMed
Chiu, F.C., Li, P.W., and Chang, W.Y.: Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films. Nanoscale Res. Lett. 7(1), 178 (2012).CrossRefGoogle ScholarPubMed
Herng, T.S., Kumar, A., Ong, C.S., Feng, Y.P., Lu, Y.H., Zeng, K.Y., and Ding, J.: Investigation of the non-volatile resistance change in noncentrosymmetric compounds. Sci. Rep. 2, 587 (2012).CrossRefGoogle ScholarPubMed
Chang, W.Y., Lai, Y.C., Wu, T.B., Wang, S.F., Chen, F., and Tsai, M.J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92(2), 022110 (2008).CrossRefGoogle Scholar
Ke, J.J., Liu, Z.J., Kang, C.F., Lin, S.J., and He, J.H.: Surface effect on resistive switching behaviors of ZnO. Appl. Phys. Lett. 99(19), 192106 (2011).CrossRefGoogle Scholar
Pérez-García, B., Zúñiga-Pérez, J., Muñoz-Sanjosé, V., Colchero, J., and Palacios-Lidón, E.: Formation and rupture of Schottky nanocontacts on ZnO nanocolumns. Nano Lett. 7(6), 1505 (2007).CrossRefGoogle ScholarPubMed
Qi, J., Olmedo, M., Zheng, J.G., and Liu, J.: Multimode resistive switching in single ZnO nanoisland system. Sci. Rep. 3, 2405 (2013).CrossRefGoogle ScholarPubMed
Kumar, A., Herng, T.S., Zeng, K.Y., and Ding, J.: Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film. ACS Appl. Mater. Interfaces 4(10), 5276 (2012).CrossRefGoogle ScholarPubMed
Li, W.X., Österlund, L., Vestergaard, E.K., Vang, R.T., Matthiesen, J., Pedersen, T.M., Lægsgaard, E., Hammer, B., and Besenbacher, F.: Oxidation of Pt (110). Phys. Rev. Lett. 93(14), 146104 (2004).CrossRefGoogle ScholarPubMed
Herng, T.S., Wong, M.F., Qi, D., Yi, J., Kumar, A., Huang, A., Kartawidjaja, F.C., Smadici, S., Abbamonte, P., Sanchez-Hanke, C., Shannigrahi, S., Xue, J.M., Wang, J., Feng, Y.P., Rusydi, A., Zeng, K.Y., and Ding, J.: Mutual ferromagnetic-ferroelectric coupling in multiferroic copper-doped ZnO. Adv. Mater. 23(14), 1635 (2011).CrossRefGoogle ScholarPubMed
Yang, C., Seidel, J., Kim, S., Rossen, P., Yu, P., Gajek, M., Chu, Y., Martin, L., Holcomb, M., and He, Q.: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8 (6), 485 (2009).CrossRefGoogle ScholarPubMed
Jiang, A.Q., Wang, C., Jin, K.J., Liu, X.B., Scott, J.F., Hwang, C.S., Tang, T.A., Lu, H.B., and Yang, G.Z.: A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23(10), 1277 (2011).CrossRefGoogle ScholarPubMed
Lee, M.H., Song, S.J., Kim, K.M., Kim, G.H., Seok, J.Y., Yoon, J.H., and Hwang, C.S.: Scanning probe based observation of bipolar resistive switching NiO films. Appl. Phys. Lett. 97(6), 062909 (2010).CrossRefGoogle Scholar
Du, Y., Kumar, A., Pan, H., Zeng, K., Wang, S., Yang, P., and Wee, A.T.S.: The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy. AIP Adv. 3(8), 082107 (2013).CrossRefGoogle Scholar
Olbrich, A., Ebersberger, B., and Boit, C.: Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO2. Appl. Phys. Lett. 73(21), 3114 (1998).CrossRefGoogle Scholar
Kalinin, S.V., Rar, A., and Jesse, S.: A decade of piezoresponse force microscopy: Progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(12), 2226 (2006).CrossRefGoogle ScholarPubMed
Kalinin, S.V., Morozovska, A.N., Chen, L.Q., and Rodriguez, B.J.: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73(5), 056502 (2010).CrossRefGoogle Scholar
Kalinin, S.V. and Bonnell, D.A.: Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B. 63(12), 125411 (2001).CrossRefGoogle Scholar
Kim, Y., Bae, C., Ryu, K., Ko, H., Kim, Y.K., Hong, S., and Shin, H.: Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy. Appl. Phys. Lett. 94(3), 032907 (2009).CrossRefGoogle Scholar
Jin, B.J., Bae, S.H., Lee, S.Y., and Im, S.: Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Mater. Sci. Eng., B. 71(1–3), 301 (2000).CrossRefGoogle Scholar
Wong, M.F., Herng, T.S., Zhang, Z., Zeng, K.Y., and Ding, J.: Stable bipolar surface potential behavior of copper-doped zinc oxide films studied by Kelvin probe force microscopy. Appl. Phys. Lett. 97(23), 232103 (2010).CrossRefGoogle Scholar
Huang, H-W., Kang, C-F., Lai, F-I., He, J-H., Lin, S-J., and Chueh, Y-L.: Stability scheme of ZnO-thin film resistive switching memory influence of defects by controllable oxygen pressure ratio. Nanoscale Res. Lett. 8, 483 (2013).CrossRefGoogle ScholarPubMed
Ma, Y., Du, G.T., Yang, T.P., Qiu, D.L., Zhang, X., Yang, H.J., Zhang, Y.T., Zhao, B.J., Yang, X.T., and Liu, D.L.: Effect of the oxygen partial pressure on the properties of ZnO thin films grown by metalorganic vapor phase epitaxy. J. Cryst. Growth 255(3–4), 303 (2003).CrossRefGoogle Scholar
Herng, T.S., Qi, D.C., Berlijn, T., Yi, J.B., Yang, K.S., Dai, Y., Feng, Y.P., Santoso, I., Sánchez-Hanke, C., Gao, X.Y., Wee, A.T.S., Ku, W., Ding, J., and Rusydi, A.: Room-temperature ferromagnetism of Cu-doped ZnO films probed by soft x-ray magnetic circular dichroism. Phys. Rev. Lett. 105(20), 207201 (2010).CrossRefGoogle ScholarPubMed
Yuan, G.L. and Wang, J.: Evidences for the depletion region induced by the polarization of ferroelectric semiconductors. Appl. Phys. Lett. 95(25), 252904 (2009).CrossRefGoogle Scholar
Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A.P., and Kalinin, S.V.: Polarization control of electron tunneling into ferroelectric surfaces. Science 324(5933), 1421 (2009).CrossRefGoogle ScholarPubMed
Gruverman, A., Wu, D., Lu, H., Wang, Y., Jang, H.W., Folkman, C.M., Zhuravlev, M.Y., Felker, D., Rzchowski, M., Eom, C-B., and Tsymbal, E.Y.: Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539 (2009).CrossRefGoogle ScholarPubMed
Qin, M., Yao, K., and Liang, Y.C.: Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces. Appl. Phys. Lett. 95(2), 022912 (2009).CrossRefGoogle Scholar
Supplementary material: File

Xiao supplementary material

Fig. S1-S4—Supporting Information

Download Xiao supplementary material(File)
File 5.6 MB