Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T07:28:40.420Z Has data issue: false hasContentIssue false

Copper nanoparticles synthesized in polymers by ion implantation: Surface morphology and optical properties of the nanocomposites

Published online by Cambridge University Press:  14 November 2014

Vladimir N. Popok*
Affiliation:
Department of Physics and Nanotechnology, Aalborg University, Aalborg 9210, Denmark
Vladimir I. Nuzhdin
Affiliation:
Kazan Physical-Technical Institute, Russian Academy of Sciences, Kazan 420029, Russia
V.F. Valeev
Affiliation:
Kazan Physical-Technical Institute, Russian Academy of Sciences, Kazan 420029, Russia
Andrei L. Stepanov
Affiliation:
Kazan Physical-Technical Institute, Russian Academy of Sciences, Kazan 420029, Russia; Kazan Federal University, Kazan 420008, Russia; and Kazan National Research Technological University, Kazan 420015, Russia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polymethylmethacrylate (PMMA) and polyimide (PI) samples are implanted by 40 keV Cu+ ions with high fluences to synthesize copper nanoparticles in shallow polymer layers. The produced metal/polymer nanocomposites are studied using atomic force and scanning electron microscopies as well as optical transmission spectroscopy. It is found that nucleation and growth of copper nanoparticles are strongly fluence-dependent as well as they are affected by the polymer properties, in particular, by radiation stability yielding different nanostructures for the implanted PI and PMMA. Shallow synthesized nanoparticles are observed to partly tower above the sample surface due to a side effect of high-fluence irradiation leading to considerable sputtering of polymers. Implantation and particle formation significantly change optical properties of both polymers reducing transmittance in the UV–visible range due to structural and compositional change as well as causing an absorption band related to localized surface plasmon resonance (LSPR) of the nanoparticles. The role of polymer type and its degradation under the implantation on LSPR is studied to optimize conditions for the formation of nanoplasmonic materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Winey, K.I. and Vaia, R.A.: Polymer nanocomposites. MRS Bull. 32, 314319 (2007).Google Scholar
Lee, P.A. and Ramakrishan, T.V.: Disordered electronic systems. Rev. Mod. Phys. 57, 287337 (1985).Google Scholar
Du, G., Burns, A., Prigodin, V.N., Wang, C.S., Joo, J., and Epstein, A.J.: Anomalous Anderson transition in carbonized ion-implanted polymer p-phenylenebenzobisoxazole. Phys. Rev. B 61, 1014210148 (2000).Google Scholar
Wang, Y., Bridwell, L.B., and Giedd, R.E.: Composite conduction in ion-implanted polymers. J. Appl. Phys. 73, 474476 (1993).Google Scholar
Teixeira, F.S., Salvadori, M.C., Cattani, M., and Brown, I.G.: Gold-implanted shallow conducting layers in polymethylmethacrylate. J. Appl. Phys. 105, 064313 (2009).Google Scholar
Di Girolamo, G., Massaro, M., Piscopiello, E., and Tapfer, L.: Metal ion implantation in inert polymers for strain gauge applications. Nucl. Instrum. Methods. Phys. Res., Sect. B 268, 28782882 (2010).CrossRefGoogle Scholar
Corbelli, G., Ghisleri, C., Marelli, M., Milani, P., and Ravagnan, L.: Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv. Mater. 23, 45044508 (2011).Google Scholar
Buhal, Ch., Withrow, S.P., White, C.W., and Poker, D.B.: Ion implantation of optical materials. Annu. Rev. Mater. Sci. 24, 125157 (1994).Google Scholar
Stepanov, A.L.: Optical extinction of metal nanoparticles synthesized in polymer by ion implantation. In Metal-polymer Nanocomposites, Nicolais, L. and Garotenuto, G. eds.; John Wiley & Sons: Hoboken, 2005; pp. 241263.Google Scholar
Stepanov, A.L.: Synthesis of silver nanoparticles in dielectric matrix by ion implantation: A review. Rev. Adv. Mater. Sci. 26, 129 (2010).Google Scholar
Stepanov, A.L., Popok, V.N., Khaibullin, I.B., and Kreibig, U.: Optical properties of polymethylmethacrilate with implanted silver nanoparticles. Nucl. Instrum. Methods Phys. Res., Sect. B 191, 473477 (2002).Google Scholar
Maier, S.A., Kik, P.G., Sweatlock, L.A., and Atwater, H.A.: Energy transport in metal nanoparticle plasmon waveguides. Mater. Res. Soc. Symp. Proc. 777, (2003) T7.1.1–7.1.12.Google Scholar
Popok, V.N.: Ion implantation of polymers: Formation of nanoparticulate materials. Rev. Adv. Mater. Sci. 30, 126 (2012).Google Scholar
Venkatesan, T., Calcagno, L., Elman, B.S., and Foti, G.: Ion beam effects in organic molecular solids and polymers. In Ion Beam Modification of Insulators, Mazzoldi, P. and Arnold, G.W. eds.; Elsevier: Amsterdam, 1987; pp. 301379.Google Scholar
Popok, V.N.: Compositional and Structural Alterations of Polymers under Low-to-medium-energy Ion Implantation. In Surface Science Research, Norris, Ch.P. ed.; Nova Sci. Publ.: New York, 2005; pp. 147193.Google Scholar
Behar, M. and Fink, D.: Mechanisms of particle-polymer interaction. In Fundamentals of Ion-irradiated Polymer, Fink, D. ed.; Springer: Berlin, 2004; pp. 119169.Google Scholar
Sviridov, D.V.: Chemical aspects of implantation of high-energy ions into polymeric materials. Russ. Chem. Rev. 71, 315327 (2002).Google Scholar
Sviridov, D.V., Odzhaev, V.B., and Kozlov, I.P.: Ion-implanted polymers. In Electrical and Optical Polymer Systems, Wise, D.L., Wnek, G.E., Trantolo, D.J., Cooper, Th.M., and Gresser, J.D. eds.; Marcel Dekker: New York, 1998; pp. 387422.Google Scholar
Marletta, G. and Iacona, F.: Chemical and physical property modifications induced by ion irradiation of polymers. In Materials and Processes for Surface and Interface Engineering, Pauleau, Y. ed.; Kluwer: Dordrecht, 1995; pp. 597640.Google Scholar
Kondyurin, A. and Bilek, M.: Ion Beam Treatment of Polymers (Elsevier, Amsterdam, 2008).Google Scholar
Petukhov, V.Yu., Khabibullina, N.R., Ibragimova, M.I., Bukharaev, A.A., Biziaev, D.A., Zheglov, E.P., Gumarov, G.G., and Muller, R.: Magnetic properties of thin metal-polymer films prepared by high-dose ion-beam implantation of iron and cobalt ions into polyethylene terephthalate. Appl. Magn. Reson. 32, 345361 (2007).Google Scholar
Khaibullin, R.I., Popok, V.N., Bazarov, V.V., Zheglov, E.P., Rameev, B.Z., Okay, C., Tagirov, L.R., and Aktas, B.: Ion synthesis of iron granular films in polyimide. Nucl. Instrum. Methods Phys. Res., Sect. B 191, 810814 (2002).CrossRefGoogle Scholar
Khaibullin, R.I., Rameev, B.Z., Okay, C., Stepanov, A.L., Zhikharev, V.A., Khaibullin, I.B., Tagirov, L.R., and Aktas, B.: Ion beam synthesis of magnetic nanoparticles in polymers. In Nanostructured Magnetic Materials and their Applications, NATO Science Series: II Mathematics, Physics and Chemistry, Aktas, B., Tagirov, L., and Mikailov, F. eds.; Kluwer: Dordrecht, Vol. 143, 2004; pp. 3364.Google Scholar
Mackova, A., Malinsky, P., Miksova, R., Pupikova, H., Khaibullin, R.I., Valeev, V.F., Svorcik, V., and Slepicka, P.: Annealing of PEEK, PET and PI implanted with Co ions to high fluences. Nucl. Instrum. Methods Phys. Res., Sect. B 307, 598602 (2013).Google Scholar
Mackova, A., Malinsky, P., Miksova, R., Hnatowicz, V., Khaibullin, R.I., Slepicka, P., and Svorcik, V.: Characterisation of PEEK, PET and PI implanted with 80 keV Fe ions to high fluences. Nucl. Instrum. Methods Phys. Res., Sect. B 331, 176181 (2014).Google Scholar
Handbook of Chemistry and Physics, Haynes, W.M. ed., CRC Press: Boca Raton, 2013.Google Scholar
Ding, M.: Isomeric polyimides. Prog. Polym. Sci. 32, 623668 (2007).Google Scholar
Popok, V.N., Azarko, I.I., Khaibullin, R.I., Stepanov, A.L., Hnatowicz, V., Mackova, A., and Prasalovich, S.V.: Radiation-induced change of polyimide properties under high-fluence and high ion current density implantation. Appl. Phys. A 78, 10671072 (2004).Google Scholar
Kondyurin, A. and Bilek, M.: Etching and structure changes in PMMA coating under argon plasma immersion ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 269, 13611369 (2011).Google Scholar
Popok, V.N., Azarko, I.I., Odzhaev, V.B., Toth, A., and Khaibullin, R.I.: High fluence ion beam modification of polymer surfaces: EPR and XPS study. Nucl. Instrum. Methods Phys. Res., Sect. B 178, 305310 (2001).Google Scholar
Stepanov, A.L., Abdullin, S.N., Petukhov, V.Yu., Osin, Yu.N., Khaibullin, R.I., and Khaibullin, I.B.: Formation of metal-polymer composites by ion implantation. Philos. Mag. B 80, 2328 (2000).Google Scholar
Yuguang, W., Tonghe, Z., Yawen, Z., Gu, Z., Huixing, Z., and Xiaoji, Z.: Influence of nanostructure on electrical and mechanical properties for Cu implanted PET. Surf. Coat. Technol. 148, 221225 (2001).Google Scholar
Popok, V.N., Gromov, A.V., Nuzhdin, V.I., and Stepanov, A.L.: Optical and AFM study of ion-synthesised silver nanoparticles in thin surface layers of SiO2 glass. J. Non-Cryst. Solids 356, 12581261 (2010).Google Scholar
Abdullin, S.N., Stepanov, A.L., Osin, Y.N., Khaibullin, R.I., and Khibullin, I.B.: Synthesis of metallic dispersion and continuous films in the viscous polymer by implantation of cobalt ions. Surf. Coat. Technol. 106, 214219 (2001).Google Scholar
Ganeev, R.F., Ryasnyansky, A.I., Stepanov, A.L., and Usmanov, T.: Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ=532 nm. Phys. Status Solidi B 241, R1R4 (2004).CrossRefGoogle Scholar
Stepanov, A.L., Popok, V.N., Hole, D.E., and Khaibullin, I.B.: Ion synthesis and laser annealing of Cu nanoparticles in Al2O3 . Appl. Phys. A 74, 441446 (2002).Google Scholar