Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:53:43.830Z Has data issue: false hasContentIssue false

Controlled preparation and characterization of multilayer sol-gel zirconia dip-coatings

Published online by Cambridge University Press:  31 January 2011

Ricardo Caruso
Affiliation:
Departamento de Electrónica e Ingenieri´a Electromecánica, Escuela de Ingenieri´as Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Antonio Di´az-Parralejo
Affiliation:
Departamento de Electrónica e Ingenieri´a Electromecánica, Escuela de Ingenieri´as Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Pedro Miranda
Affiliation:
Departamento de Electrónica e Ingenieri´a Electromecánica, Escuela de Ingenieri´as Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Fernando Guiberteau*
Affiliation:
Departamento de Electrónica e Ingenieri´a Electromecánica, Escuela de Ingenieri´as Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
*
b)Address all correspondence to this author.
Get access

Abstract

We describe a method for controlled preparation of sol-gel ceramic multilayer coatings obtained by dip-coating. The proposed fabrication routine guarantees obtaining crack-free multilayer coatings with control of the thickness and porosity of individual layers. The procedure is applied to obtain a 10-layer ZrO2–3 mol% Y2O3 coating deposited on AISI 310 stainless steel. The microstructure of this coating was investigated by using x-ray powder diffractometry and atomic force microscopy, and special consideration was given to the mechanical characterization of this thin film using ultramicrohardness indentation tests. Our results suggest that these zirconia coatings have good properties for use as protection barriers. Implications concerning general tailoring design of sol-gel dip-coatings are also considered.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Uhlmann, D.R., Selenski, B.J.J., and Wnek, G.E., in Better Ceram-ics Through Chemistry, edited by Brinker, C.J., Materials Research Symposia Proceedings Vol. 32 (Elsevier, New York, 1984), p. 59.Google Scholar
2Brinker, C.J. and Scherer, G.W., in Sol-Gel Science (Academic Press, San Diego, CA, 1990).Google Scholar
3Blanco, E., Esquivias, L., Litrán M-Piñero, R., Ramírez-del-Solar, M., and de la Rosa-Fox, N., Appl. Organomet. Chem. 13, 399 (1999).3.0.CO;2-A>CrossRefGoogle Scholar
4Schmidt, H., in Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, edited by Reisfeld, R. and Jorgensen, C.K. (Springer-Verlag, Berlin, Germany, 1992), p. 119.CrossRefGoogle Scholar
5Sakka, S. and Yoko, T., in Chemistry, Spectroscopy and Applica-tions of Sol-Gel Glasses, edited by Reisfeld, R. and Jorgensen, C.K. (Springer-Verlag, Berlin, Germany, 1992), p. 90.Google Scholar
6Dislich, H., in Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics and Specialty Shapes, edited by Klein, L.C. (Noyes Publications, Park Ridge, NJ, 1988), p. 50.Google Scholar
7Pettit, R.B., Ashley, C.S., Reed, S.T., and Brinker, C.J., In Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics and Specialty Shapes, edited by Klein, L.C. (Noyes Publications, Park Ridge, NJ, 1988), p. 80.Google Scholar
8Shane, M. and Mecartney, M.I., J. Mater. Sci. 25, 1537 (1990).CrossRefGoogle Scholar
9Green, D.J., Hannink, R.H., and Swain, M.W., in Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989).Google Scholar
10Scherer, G.W., J. Non-Cryst. Solids 107, 135 (1989).CrossRefGoogle Scholar
11Caruso, R., Díaz, M.A., Díaz-Parralejo, A., and Guiberteau, F. (in preparation).Google Scholar
12De Sanctis, O., Gómez, L., Pellegri, N., and Duran, A., Surf. Coat. Technol. 70, 251 (1995).CrossRefGoogle Scholar
13Guglielmi, M. and Zenezini, S., J. Non-Cryst. Solids 121, 303 (1990).CrossRefGoogle Scholar
14Bergmann, J., Kleeberg, R., Taut, T., and Haase, A., Adv. X-ray Anal. 40, 112 (1997).Google Scholar
15Kraus, W. and Nolze, G., J. Appl. Crystallogr. 29, 301 (1996).CrossRefGoogle Scholar
16Loubet, J.L., Georges, J.M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing Materials STP 889, West Conshohocken, PA, 1989), p. 72.Google Scholar
17Oliver, W.C. and Pharr, G.M., J. Mater Res. 7, 1564 (1992).CrossRefGoogle Scholar
18Sneddon, J.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
19Riester, L. and Ferber, M.K., in Plastic Deformation of Ceramics, edited by Bradt, R.C., Brookes, C.A., and Routbort, J.L. (Plenum Press, New York, 1995), p. 185.CrossRefGoogle Scholar
20Caruso, R., Benavides, E., de Sanctis, O., Caracoche, M.C., Rivas, P.C., Cervera, M., Caneiro, A., and Serquis, A., J. Mater. Res. 12 (10), 2594 (1997).CrossRefGoogle Scholar
21Yoldas, B.E., J. Mater. Sci. 21, 1080 (1986).CrossRefGoogle Scholar
22Nogami, M. and Nagasaka, K., J. Non-Cryst. Solids 109, 79 (1989).CrossRefGoogle Scholar
23Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1961).CrossRefGoogle Scholar
24McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louër, D. and Scardi, P., J. Appl. Crystallogr. 32, 36 (1999).CrossRefGoogle Scholar
25Sánchez-Bajo, F. and Cumbrera, F.L., J. Appl. Crystallogr. 30, 427 (1997).CrossRefGoogle Scholar