Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T04:00:20.879Z Has data issue: false hasContentIssue false

Composition control of radio-frequency magnetron sputter-deposited La0.5Sr0.5CoO3−∂ thin films

Published online by Cambridge University Press:  31 January 2011

D. O. Klenov*
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106–5050
W. Donner
Affiliation:
Department of Physics, University of Houston, Houston, Texas 77204–5005
L. Chen
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204–5500
A. J. Jacobson
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204–5500
S. Stemmer*
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106–5050
*
Get access

Abstract

For this paper, we used radio-frequency (rf) sputter deposition to synthesize epitaxial La0.5Sr0.5CoO3−∂ (LSCO) films. We investigated the influence of sputter deposition parameters, in particular, oxygen partial pressure, plasma power, total sputter pressure, and post-deposition cooling atmosphere on film composition, microstructure, and electrical resistivity. We show that rf sputtering from a single target can produce LSCO films with La/Sr and (La + Sr)/Co ratios of unity and with low electrical resistivities of about 1 mΩ cm. Film microstructures were characterized by high-resolution transmission electron microscopy and x-ray diffraction. Formation of an ordered film superlattice, most likely due to oxygen vacancy ordering, was observed. In this paper, we discuss the relationship between the film microstructure and the electrical resistivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.deSouza, S., Visco, S.J., and DeJonghe, L.C., J. Electrochem. Soc. 144, L35 (1997).CrossRefGoogle Scholar
2.Mims, C.A., Joos, N.I., Heide, P.A.W. v.d., Jacobson, A.J., Chen, C., Chu, C.W., Kim, B.I., and Perry, S.S., Electrochem. Solid-State Lett. 3, 59 (2000).CrossRefGoogle Scholar
3.Mizusaki, J., Tabuchi, J., Matsuura, T., Yamauchi, S., and Fueki, K., J. Electrochem. Soc. 136, 2082 (1989).CrossRefGoogle Scholar
4.Konochuk, O.F., Norby, T., and Kofstad, P., Phase Transitions 58, 145 (1996).CrossRefGoogle Scholar
5.Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1995).CrossRefGoogle Scholar
6.Teraoka, Y., Zhang, H-M., Furukawa, S., Yamazoe, N., Chem. Lett. 1743 (1985).Google Scholar
7.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
8.Petrov, A.N., Kononchuk, O.F., Andreev, A.V., Cherepanov, V.A., and Kofstad, P., Solid State Ionics. 80, 189 (1995).CrossRefGoogle Scholar
9.Raccah, P.M. and Goodenough, J.B., J. Appl. Phys. 39, 1209 (1968).CrossRefGoogle Scholar
10.Span, E.A.F., Roesthuis, F.J.G., Blank, D.H.A., and Rogalla, H., Appl. Phys. A 69, S783 (1999).CrossRefGoogle Scholar
11.Madhukar, S., Aggarwal, S., Dhote, A.M., Ramesh, R., Krishnan, A., Keeble, D., Pointdexter, E., J. Appl. Phys. 81, 3543 (1997).CrossRefGoogle Scholar
12.Wu, W., Wong, K.H., and Choy, C.L., Thin Solid Films 385, 298 (2001).CrossRefGoogle Scholar
13.Cheung, J.T., Morgan, P.E.D., Lowndes, D.H., Zheng, X.Y., and Breen, J., Appl. Phys. Lett. 62, 2045 (1993).CrossRefGoogle Scholar
14.Jia, Q.X., Arendt, P.N., Kwon, C., Roper, J.M., Fan, Y., Groves, J.R., Foltyn, S.R., J. Vac. Sci. Technol. A 16, 1380 (1998).CrossRefGoogle Scholar
15.Masumoto, H., Hiboux, S., and Muralt, P., Ferroelectrics 225, 1141 (1999).CrossRefGoogle Scholar
16.Doorn, R.H.E. van and Burggraaf, A.J., Solid State Ionics. 128, 65 (2000).CrossRefGoogle Scholar
17.Kirchnerova, J. and Hibbert, D.B., Mater. Res. Bull. 25, 585 (1990).CrossRefGoogle Scholar
18.Stemmer, S., Jacobson, A.J., Chen, X., and Ignatiev, A., J. Appl. Phys. 90, 3319 (2001).CrossRefGoogle Scholar
19.Span, E.A.F., Roesthuis, F.J.G., Blank, D.H.A., and Rogalla, H., Appl. Surf. Sci. 150, 171 (1999).CrossRefGoogle Scholar
20.Gunasekaran, R.A., Pedarnig, J.D., and Dinescu, M., Appl. Phys. A Mater. Sci. Proc. 69, 621 (1999).CrossRefGoogle Scholar
21.Wang, Z.L. and Yin, J.S., Philos. Mag. B 77, 49 (1998).CrossRefGoogle Scholar
22.Raymond, M.V., Al-Shareef, H.N., Tuttle, B.A., Dimos, D., and Evans, in Ferroelectric Thin Films V, edited by Desu, S.B., Ramesh, , Tuttle, B.A., Jones, R.E., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 433, Pittsburgh, PA, 1996), pp. 145150.Google Scholar
23.Morin, F., Trudel, G., and Denos, Y., Solid State Ionics 96, 129 (1997).CrossRefGoogle Scholar
24.Hamerich, A., Wunderlich, R., and Muller, J., J. Vac. Sci. Technol. A 12, 2873 (1994).CrossRefGoogle Scholar
25.Gavaler, J.R., Talvacchio, J., Braggins, T.T., Forrester, M.G., and Greggi, J., J. Appl. Phys. 70, 4383 (1991).CrossRefGoogle Scholar
26.Rao, C.N.R., Gopalakrishnan, J., and Vidyasagar, K., Ind. J. Chem. 23A, 265 (1984).Google Scholar
27.Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., Ahmad-Khanlou, A., Solid State Ionics. 138, 79 (2000).CrossRefGoogle Scholar
28.Ramesh, S., Manoharan, S.S., and Hegde, M.S., J. Mater. Chem. 5, 1053 (1995).CrossRefGoogle Scholar