Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T23:13:29.814Z Has data issue: false hasContentIssue false

Comparing sintering and atomic layer deposition as methods to mechanically reinforce nanocolloidal crystals

Published online by Cambridge University Press:  14 December 2015

Di Zhang
Affiliation:
Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, USA
Yue Xu
Affiliation:
Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, USA
Gang Feng*
Affiliation:
Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, USA
Yun-Ru Huang
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Daeyeon Lee
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocolloidal crystals (NCCs) have promising applications in optical and photonic devices. However, it is critical to mechanically reinforce NCCs for device reliability, since as-synthesized NCCs are fragile due to weak interparticle bonding. Thermal sintering is currently the most common reinforcement technique; however, this method could induce serious cracking and is not suitable for temperature-sensitive materials. In this study, by characterizing silica NCCs reinforced through sintering and alumina atomic layer deposition (ALD), we find that the ALD treatment is much more effective for hardening, stiffening, and more importantly toughening NCCs. Thermally sintered NCCs are prone to indentation-induced cracking due to large residual tensile stress, significantly impairing the toughness. In contrast, the ALD treatment toughens NCCs by much over 300%. Our finding provides insights for reinforcing and toughening various nanoparticle-based and nanoporous materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Holtz, J.H. and Asher, S.A.: Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653), 829 (1997).Google Scholar
Vlasov, Y.A., Bo, X-Z., Sturm, J.C., and Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289 (2001).CrossRefGoogle ScholarPubMed
Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460), 1989 (2000).Google Scholar
Rinne, S.A., Garcia-Santamaria, F., and Braun, P.V.: Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat. Photonics 2(1), 52 (2008).CrossRefGoogle Scholar
Zhao, Y. and Avrutsky, I.: Two-dimensional colloidal crystal corrugated waveguides. Opt. Lett. 24(12), 817 (1999).Google Scholar
Istrate, E. and Sargent, E.H.: Photonic crystal heterostructures—resonant tunnelling, waveguides and filters. J. Opt. A: Pure Appl. Opt. 4(6), S242 (2002).Google Scholar
Lee, K. and Asher, S.A.: Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122(39), 9534 (2000).CrossRefGoogle Scholar
Zhang, L., Prosser, J.H., Feng, G., and Lee, D.: Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films. Nanoscale 4(20), 6543 (2012).CrossRefGoogle ScholarPubMed
Dafinone, M.I., Feng, G., Brugarolas, T., Tettey, K.E., and Lee, D.: Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. ACS Nano 5(6), 5078 (2011).Google Scholar
Gallego-Gómez, F., Morales Flórez, V., Blanco, Á., de la Rosa Fox, N., and López, C.: Water-dependent micromechanical and rheological properties of silica colloidal crystals studied by nanoindentation. Nano Lett. 12(9), 4920 (2012).CrossRefGoogle ScholarPubMed
Zhou, J., Li, H., Ye, L., Liu, J., Wang, J., Zhao, T., Jiang, L., and Song, Y.: Facile fabrication of tough SiC inverse opal photonic crystals. J. Phys. Chem. C 114(50), 22303 (2010).CrossRefGoogle Scholar
Shen, Z., Yang, Y., Lu, F., Bao, B., and You, B.: Self-assembly of binary particles and application as structural colors. Polym. Chem. 3(9), 2495 (2012).CrossRefGoogle Scholar
Miguez, H., Blanco, A., Lopez, C., Meseguer, F., Yates, H.M., Pemble, M.E., Lopez-Tejeira, F., Garcia-Vidal, F.J., and Sanchez-Dehesa, J.: Face centered cubic photonic bandgap materials based on opal-semiconductor composites. J. Lightwave Technol. 17(11), 1975 (1999).CrossRefGoogle Scholar
Mayoral, R., Requena, J., Moya, J.S., López, C., Cintas, A., Miguez, H., Meseguer, F., Vázquez, L., Holgado, M., and Blanco, Á.: 3D Long-range ordering in an SiO2 submicrometer-sphere sintered superstructure. Adv. Mater. 9(3), 257 (1997).Google Scholar
Kuai, S.L., Zhang, Y.Z., Truong, V.V., and Hu, X.F.: Improvement of optical properties of silica colloidal crystals by sintering. Appl. Phys. A 74(1), 89 (2002).CrossRefGoogle Scholar
Van Le, T., Ross, E.E., Velarde, T.R.C., Legg, M.A., and Wirth, M.J.: Sintered silica colloidal crystals with fully hydroxylated surfaces. Langmuir 23(16), 8554 (2007).Google Scholar
Míguez, H., Meseguer, F., López, C., Blanco, Á., Moya, J.S., Requena, J., Mifsud, A., and Fornés, V.: Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering. Adv. Mater. 10(6), 480 (1998).3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Gouvêa, D. and Castro, R.H.R.: Sintering: The role of interface energies. Appl. Surf. Sci. 217(1–4), 194 (2003).Google Scholar
Gates, B., Park, S.H., and Xia, Y.: Tuning the photonic bandgap properties of crystalline arrays of polystyrene beads by annealing at elevated temperatures. Adv. Mater. 12(9), 653 (2000).3.0.CO;2-3>CrossRefGoogle Scholar
Machii, N. and Nakamura, A.M.: Experimental study on static and impact strength of sintered agglomerates. Icarus 211, 885 (2011).Google Scholar
Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., and Ralchenko, V.G.: Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282(5390), 897 (1998).CrossRefGoogle ScholarPubMed
Pallavidino, L., Razo, D.S., Geobaldo, F., Balestreri, A., Bajoni, D., Galli, M., Andreani, L.C., Ricciardi, C., Celasco, E., Quaglio, M., and Giorgis, F.: Synthesis, characterization and modelling of silicon based opals. J. Non-Cryst. Solids 352(9–20), 1425 (2006).Google Scholar
Kuai, S-L., Truong, V-V., Haché, A., and Hu, X-F.: A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates. J. Appl. Phys. 96(11), 5982 (2004).Google Scholar
Kuai, S., Badilescu, S., Bader, G., Brüning, R., Hu, X., and Truong, V.V.: Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating. Adv. Mater. 15(1), 73 (2003).Google Scholar
Hatton, B., Mishchenko, L., Davis, S., Sandhage, K.H., and Aizenberg, J.: Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. U. S. A. 107(23), 10354 (2010).Google Scholar
Johnson, N.P., McComb, D.W., Richel, A., Treble, B.M., and De La Rue, R.M.: Synthesis and optical properties of opal and inverse opal photonic crystals. Synth. Met. 116(1–3), 469 (2001).CrossRefGoogle Scholar
Chen, X., Wang, L., Wen, Y., Zhang, Y., Wang, J., Song, Y., Jiang, L., and Zhu, D.: Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. J. Mater. Chem. 18(19), 2262 (2008).CrossRefGoogle Scholar
Gu, Z.Z., Kubo, S., Fujishima, A., and Sato, O.: Infiltration of colloidal crystal with nanoparticles using capillary forces: A simple technique for the fabrication of films with an ordered porous structure. Appl. Phys. A 74, 127 (2002).Google Scholar
Kubo, S., Gu, Z-Z., Takahashi, K., Fujishima, A., Segawa, H., and Sato, O.: Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure. J. Am. Chem. Soc. 126(26), 8314 (2004).CrossRefGoogle ScholarPubMed
King, J.S., Gaillot, D.P., Graugnard, E., and Summers, C.J.: Conformally back-filled, non-close-packed inverse-opal photonic crystals. Adv. Mater. 18(8), 1063 (2006).Google Scholar
Graugnard, E., King, J.S., Gaillot, D.P., and Summers, C.J.: Sacrificial-layer atomic layer deposition for fabrication of non-close-packed inverse-opal photonic crystals. Adv. Funct. Mater. 16(9), 1187 (2006).Google Scholar
Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., and van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405(6785), 437 (2000).CrossRefGoogle ScholarPubMed
Poppe, T.: Sintering of highly porous silica-particle samples: Analogues of early Solar-system aggregates. Icarus 164(1), 139 (2003).Google Scholar
Masuda, H., Higashitani, K., and Yoshida, H.: Powder Technology Handbook (CRC Press, Boca Raton, 2006).Google Scholar
Castro, R.H.R. and Benthem, K.v.: Sintering Mechanisms of Convention Nanodensification and Field Assisted Processes (Springer, Verlag Berlin Heidelberg, 2013).Google Scholar
German, R.M.: Sintering: From Empirical Observations to Scientific Principles (Elsevier, Oxford, 2014).Google Scholar
Fang, Z.Z.: Sintering of Advanced Materials Fundamentals and Processes (Woodhead Publishing, Philadelphia, 2010).Google Scholar
Zhang, D., Zhang, L., Lee, D., Cheng, X., and Feng, G.: Suppressing unstable deformation of nanocolloidal crystals with atomic layer deposition. Mater. Sci. Eng., A 639, 514 (2015).CrossRefGoogle Scholar
Zhang, D., Zhang, L., Lee, D., Cheng, X., and Feng, G.: Reinforcing nanocolloidal crystals by tuning interparticle bonding via atomic layer deposition. Acta Mater. 95, 216 (2015).CrossRefGoogle Scholar
Gallego-Gomez, F., Blanco, A., and Lopez, C.: Exploration and exploitation of water in colloidal crystals. Adv. Mater. 27(17), 2686 (2015).Google Scholar
Miguez, H., Tetreault, N., Hatton, B., Yang, S.M., Perovic, D., and Ozin, G.A.: Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide. Chem. Commun. (22), 2736 (2002).Google Scholar
Li, H., Wang, J., Pan, Z., Cui, L., Xu, L., Wang, R., Song, Y., and Jiang, L.: Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J. Mater. Chem. 21(6), 1730 (2011).Google Scholar
Wang, J., Wen, Y., Ge, H., Sun, Z., Zheng, Y., Song, Y., and Jiang, L.: Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromol. Chem. Phys. 207(6), 596 (2006).Google Scholar
Míguez, H., Yang, S.M., Tétreault, N., and Ozin, G.A.: Oriented free-standing three-dimensional silicon inverted colloidal photonic crystal microfibers. Adv. Mater. 14(24), 1805 (2002).Google Scholar
Galisteo, J.F., García-Santamaría, F., Golmayo, D., Juárez, B.H., López, C., and Palacios, E.: Self-assembly approach to optical metamaterials. J. Opt. A: Pure Appl. Opt. 7(2), S244 (2005).Google Scholar
Sechrist, Z.A., Schwartz, B.T., Lee, J.H., McCormick, J.A., Piestun, R., Park, W., and George, S.M.: Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chem. Mater. 18(15), 3562 (2006).Google Scholar
Moon, J.H. and Yang, S.: Chemical aspects of three-dimensional photonic crystals. Chem. Rev. 110(1), 547 (2009).Google Scholar
George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).Google Scholar
Leskel, M. and Ritala, M.: Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem., Int. Ed. 42, 5548 (2003).Google Scholar
Kim, H., Lee, H.B.R., and Maeng, W.J.: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517(8), 2563 (2009).Google Scholar
Leskelä, M. and Ritala, M.: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409(1), 138 (2002).Google Scholar
Scharrer, M., Wu, X., Yamilov, A., Cao, H., and Chang, R.P.H.: Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition. Appl. Phys. Lett. 86(15), 151113 (2005).Google Scholar
Blanco, A., Gallego-Gómez, F., and López, C.: Nanoscale morphology of water in silica colloidal crystals. J. Phys. Chem. Lett. 4(7), 1136 (2013).Google Scholar
Gallego-Gómez, F., Blanco, A., Canalejas-Tejero, V., and López, C.: Water-dependent photonic bandgap in silica artificial opals. Small 7(13), 1838 (2011).Google Scholar
Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62 (1968).CrossRefGoogle Scholar
Wang, L., Wan, Y., Li, Y., Cai, Z., Li, H-L., Zhao, X.S., and Li, Q.: Binary colloidal crystals fabricated with a horizontal deposition method. Langmuir 25(12), 6753 (2009).Google Scholar
Yan, Q., Zhao, X.S., and Zhou, Z.: Fabrication of colloidal crystal heterostructures using a horizontal deposition method. J. Cryst. Growth 288(1), 205 (2006).CrossRefGoogle Scholar
Yan, Q., Zhou, Z., and Zhao, X.S.: Inward-growing self-assembly of colloidal crystal films on horizontal substrates. Langmuir 21(7), 3158 (2005).Google Scholar
Olive, W.C. and Pharr, G.M.: An Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
Hay, J. and Crawford, B.: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26(06), 727 (2011).CrossRefGoogle Scholar
Han, S.M., Saha, R., and Nix, W.D.: Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, 1571 (2006).Google Scholar
Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H., and Leipner, H.S.: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67(17), 172101 (2003).Google Scholar
Gallego-Gómez, F., Blanco, A., and López, C.: In Situ optical study of water sorption in silica colloidal crystals. J. Phys. Chem. C 116(34), 18222 (2012).CrossRefGoogle Scholar
Chiappini, A., Armellini, C., Chiasera, A., Ferrari, M., Jestin, Y., Mattarelli, M., Montagna, M., Moser, E., Nunzi Conti, G., Pelli, S., Righini, G.C., Clara Gonçalves, M., and Almeida, R.M.: Design of photonic structures by sol–gel-derived silica nanospheres. J. Non-Cryst. Solids 353(5–7), 674 (2007).Google Scholar
Garcia-Santamaria, F., Miguez, H., Ibisate, M., Meseguer, F., and Lopez, C.: Refractive index properties of calcined silica submicrometer spheres. Langmuir 18, 1942 (2002).Google Scholar
Chrobak, D., Nordlund, K., and Nowak, R.: Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98(4), 045502 (2007).CrossRefGoogle ScholarPubMed
Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42(4), 642 (2001).Google Scholar
Tirumkudulu, M.S. and Russel, W.B.: Cracking in drying latex films. Langmuir 21(11), 4938 (2005).Google Scholar
Dufresne, E.R., Corwin, E.I., Greenblatt, N.A., Ashmore, J., Wang, D.Y., Dinsmore, A.D., Cheng, J.X., Xie, X.S., Hutchinson, J.W., and Weitz, D.A.: Flow and fracture in drying nanoparticle suspensions. Phys. Rev. Lett. 91(22), 224501 (2003).Google Scholar
Singh, K.B. and Tirumkudulu, M.S.: Cracking in drying colloidal films. Phys. Rev. Lett. 98(21), 218302 (2007).Google Scholar
Jagota, A. and Hui, C.Y.: Mechanics of sintering thin films—II. Cracking due to self-stress. Mech. Mater. 11(3), 221 (1991).CrossRefGoogle Scholar
Grabner, L.: Spectroscopic technique for the measurement of residual stress in sintered Al2O3 . J. Appl. Phys. 49(2), 580 (1978).Google Scholar
Lawn, B.R., Evans, A.G., and Marshall, D.B.: Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 63(9–10), 574 (1980).CrossRefGoogle Scholar
Lee, J.H., Gao, Y.F., Johanns, K.E., and Pharr, G.M.: Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials. Acta Mater. 60(15), 5448 (2012).Google Scholar
Volinsky, A.A., Vella, J.B., and Gerberich, W.W.: Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429(1–2), 201 (2003).Google Scholar
Pharr, G.M.: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253(1–2), 151 (1998).CrossRefGoogle Scholar
Scholz, T., Schneider, G.A., Muñoz-Saldaña, J., and Swain, M.V.: Fracture toughness from submicron derived indentation cracks. Appl. Phys. Lett. 84(16), 3055 (2004).Google Scholar
Hardinga, D.S., Olivera, W.C., and Pharra, G.M.: Cracking during nanoindentation and its use in the measurement of fracture toughness. Mater. Res. Soc. Symp. Proc. 356, 663 (1995).Google Scholar
Anunmana, C., Anusavice, K.J., and Mecholsky, J.J.: Residual stress in glass: Indentation crack and fractography approaches. Dent. Mater. 25(11), 1453 (2009).CrossRefGoogle ScholarPubMed
Zeng, K. and Rowcliffe, D.: Experimental measurement of residual stress field around sharp indentation in glass. J. Am. Ceram. Soc. 77(2), 524 (1994).Google Scholar
Supplementary material: PDF

Zhang Supplementary Material

Zhang Supplementary Material

Download Zhang Supplementary Material(PDF)
PDF 1.5 MB