Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T14:26:05.576Z Has data issue: false hasContentIssue false

Chemical durability of hierarchically porous silicalite-I membrane substrates in aqueous media

Published online by Cambridge University Press:  03 July 2013

Neda Keshavarzi
Affiliation:
Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Farid Akhtar
Affiliation:
Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Lennart Bergström*
Affiliation:
Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Zeolite-based supports for inorganic membranes intended for gas separation have the potential to increase the resistance to thermal shock-induced cracking compared with ceramic or metallic substrates. We have studied the effect of exposure at 90 °C of hierarchically porous silicalite-I substrates to aqueous solutions at pH 2.0, 10.6, and 13.0 for periods up to 168 h. Silicalite-I supports were produced in binder-free form by pulsed current processing and using clay-binders by conventional thermal treatment. Long-term (168 h) acid and alkali treatment of the silicalite-I substrates results in a slight removal of silicon (in acid) and aluminum (in alkali) and does not affect the specific surface area and the crystalline microporous structural features but broadens the size distribution of the macropores. The mechanical strength remains unchanged after exposure to both alkaline and acidic solutions and the binder-free substrates display more than 20 times higher strength than the binder-containing materials.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Camus, O., Perera, S., Crittenden, B., van Delft, Y.C., Meyer, D.F., Pex, P.P.A.C., Kumakiri, I., Miachon, S., Dalmon, J-A., Tennison, S., Chanaud, P., Groensmit, E., and Nobel, W.: Ceramic membranes for ammonia recovery. AIChE J. 52(6), 2055 (2006).CrossRefGoogle Scholar
Caro, J., Noack, M., and Kölsch, P.: Zeolite membranes: From the laboratory scale to technical applications. Adsorption 11(3–4), 215 (2005).CrossRefGoogle Scholar
Noack, M., Kölsch, P., Schäfer, R., Toussaint, P., and Caro, J.: Molecular sieve membranes for industrial application: Problems, progress, solutions. J. Chem. Eng. Technol. 25(3), 221 (2002).3.0.CO;2-W>CrossRefGoogle Scholar
McLeary, E.E., Jansen, J.C., and Kapteijn, F.: Zeolite based films, membranes and membrane reactors: Progress and prospects. Microporous Mesoporous Mater. 90(1–3), 198 (2006).CrossRefGoogle Scholar
Piera, E., Giroir-fendler, A., Dalmon, J.A., Moueddeb, H., Coronas, J., Menéndez, M., and Santamaria, J.: Separation of alcohols and alcohols/O2 mixtures using zeolite MFI membranes. J. Mem. Sci. 142, 97 (1998).CrossRefGoogle Scholar
Piera, E., Téllez, C., Coronas, J., Menéndez, M., and Santamaria, J.: Use of zeolite membrane reactors for selectivity enhancement: Application to the liquid-phase oligomerization of i-butene. Catal. Today 67(1–3), 127 (2001).CrossRefGoogle Scholar
Wong, W.C., Au, L.T.Y., Ariso, C.T., and Yeung, K.L.: Effects of synthesis parameters on the zeolite membrane growth. J. Mem. Sci. 191(1–2), 143 (2001).CrossRefGoogle Scholar
Berenguer-Murcia, Á., Garcia-Martinez, J., Cazorla-Amorós, D., Linares-Solano, Á., and Fuertes, A.B.: Silicalite-1 membranes supported on porous carbon discs. Microporous Mesoporous Mater. 59(2–3), 147 (2003).CrossRefGoogle Scholar
Akhtar, F., Ojuva, A., Wirawan, S.K., Hedlund, J., and Bergström, L.: Hierarchically porous binder-free silicalite-1 discs: A novel support for all-zeolite membranes. J. Mater. Chem. 21(24), 8822 (2011).CrossRefGoogle Scholar
Lai, R. and Gavalas, G.R.: Surface seeding in ZSM-5 membrane preparation. Ind. Eng. Chem. Res. 37(11), 4275 (1998).CrossRefGoogle Scholar
Jeannette-Mareike, H-Z.: Chemical and thermal stability of mesoporous ceramic membranes, Ph.D. Thesis. Proefschrift Universiteit Twente, Enschede, The Netherlands, 1995.Google Scholar
Mallada Reyes, M. and Menédez, M.: Inorganic Membranes, Synthesis, Characterization and Applications, 13 serie (Elsevier B.V., England, 2008), p. 7.Google Scholar
Van Gestel, T., Vandecasteele, C., Buekenhoudt, A., Dotremont, C., Luyten, J., Leysen, R., Van der Bruggen, B., and Maes, G.: Alumina and titania multilayer membranes for nanofiltration: Preparation, characterization and chemical stability. J. Membr. Sci. 207(1), 73 (2002).CrossRefGoogle Scholar
Iler, R.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley Interscience, New York, 1979).Google Scholar
Andersson, C. and Hedlund, J.: Effects of exposure to water and ethanol on silicalite-1 membranes. J. Membr. Sci. 313(41), 120 (2008).CrossRefGoogle Scholar
Apelian, M.R., Fung, A.S., Kennedy, G.J., and Degnan, T.F.: Dealumination of zeolite β via dicarboxylic acid treatment. J. Phys. Chem. 100(41), 16577 (1996).CrossRefGoogle Scholar
Ogura, M., Shinomiya, S., Tateno, J., Nara, Y., Nomura, M., Kikuchi, E., and Matsukata, M.: Alkali-treatment technique: New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. J. Appl. Catal. 219(1–2), 33 (2001).CrossRefGoogle Scholar
Čimek, A., Subotić, B., Šmit, I., Tonejc, A., Aiello, R., Crea, F., and Nastro, A.: Dissolution of high-silica zeolites in alkaline solutions II: Dissolution of ‘activated’ silicalite-1 and ZSM-5 with different aluminum content. Microporous Mater. 8(3–4), 159 (1997).CrossRefGoogle Scholar
Werner, S.: Formation of silicic acid in aqueous suspensions of different silica modifications: In equilibrium concepts in natural water systems. J. Am. Chem. Soc. 67, 161 (1967).Google Scholar
Beyer, H.: Dealumination techniques for zeolites. Molecular Seive 3, 203 (2002).Google Scholar
Li, Y.Y., Perera, S.P., Crittenden, B.D., and Bridgwater, J.: The effect of the binder on the manufacture of a 5A zeolite monolith. Powder Technol. 116(1), 85 (2001).CrossRefGoogle Scholar
van Mao, R., Rutinduka, E., Detellier, C., Gougay, P., Hascoet, V., Tavakoliyan, S., V Hoa, S., and Matsuura, T.: Mechanical and pore characteristics of zeolite composite membranes. J. Mater. Chem. 9(3), 783 (1999).Google Scholar
Oelkers, E.H., Schott, J., and Devidal, J-L.: The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58(9), 2011 (1994).CrossRefGoogle Scholar
Casey, W.H., Westrich, H.R., and Arnold, G.W.: Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3, and 12. Geochim. Cosmochim. Acta 52(12), 2795 (1988).CrossRefGoogle Scholar
ASTM standard F394-78: Test Method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates (ASTM international, West conshohocken, PS, DOI: 10-1520/F0394-78R96, 1996).Google Scholar
Xie, Z. and Walther, J.V.: Incongruent dissolution and surface area of kaolinite. Geochim. Cosmochim. Acta 56(9), 3357 (1992).CrossRefGoogle Scholar
May, H.M., Klnniburgh, D.G., Helmke, P.A., and Jackson, M.L.: Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites. Geochim. Cosmochim. Acta 50(8), 1667 (1986).CrossRefGoogle Scholar
Hartman, R.L. and Fogler, H.S.: Understanding the dissolution of zeolites. J. Am. Chem. Soc. 23(10), 5477 (2007).Google ScholarPubMed
Jozefaciuk, G. and Bowanko, G.: Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays Clay Miner. 50(6), 771 (2002).CrossRefGoogle Scholar
Shi, F.: Ceramic Material-Progress in Modern Ceramics (Intech, Rijeka, Croatia, 2012).CrossRefGoogle Scholar