Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T04:19:59.610Z Has data issue: false hasContentIssue false

Characterization of radiation-induced effects in amorphous arsenic sulfides by positron annihilation lifetime spectroscopy

Published online by Cambridge University Press:  27 January 2015

Mykhaylo Shpotyuk*
Affiliation:
Institute of Materials, Scientific Research Company “Carat”, Lviv 79031, Ukraine; and Department of Semiconductor Electronics, Lviv Polytechnic National University, Lviv 79013, Ukraine
Adam Ingram
Affiliation:
Department of Physics, Opole Technical University, Opole 45370, Poland
Oleh Shpotyuk*
Affiliation:
Institute of Materials, Scientific Research Company “Carat”, Lviv 79031, Ukraine; and Institute of Physics, Jan Dlugosz University, Czestochowa 42200, Poland
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Positron annihilation lifetime spectroscopy is used to study the structural changes in amorphous arsenic sulfides of a binary As–S system induced by high-energy γ-radiation of 60Co source. It is demonstrated that radiation-induced effects in positron trapping modes of the studied glasses are in strict correlation with shift of their fundamental optical absorption edge. The γ-induced physical aging is shown to be dominated in the rejuvenated S-rich glasses, thermally induced physical aging accompanies annealing of the rejuvenated g-AsxS100−x, while coordination topological defects are character for near-stoichiometric glasses (both annealed and rejuvenated). The competitive processes of free-volume void evolutions such as agglomeration–fragmentation, expansion–contraction, and charging–discharging are considered as possible stages of radiation- and thermally induced structural transformations. The meaningful model for γ-irradiation and relaxation-driven evolution in the void structure of As–S glasses is proposed. The free-volume evolution in g-AsxS100−x associated with thermally and γ-induced physical aging is shown to be consistent with a void fragmentation process, while the formation of γ-induced coordination topological defects leads mainly to void charging.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Joel Ribis

References

REFERENCES

Feltz, A.: Amorphous Inorganic Materials and Glasses (VCH, Weinheim, New York, Basel, Cambridge, 1993), p. 446.Google Scholar
Borisova, Z.U.: Glassy Semiconductors (Plenum Press, New York, 1981), p. 505.Google Scholar
Popescu, M.A.: Non-Crystalline Chalcogenides (Kluwer Academic Publisher, Dordrecht, Boston, London, 2000), p. 377.Google Scholar
Zakery, A. and Elliott, S.R.: Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer-Verlag, Berlin, Heidelberg, 2007), p. 199.Google Scholar
Sanghera, J.S. and Aggarwal, I.D.: Active and passive chalcogenide glass optical fibers for IR applications: A review. J. Non-Cryst. Solids 256257, 6 (1999).Google Scholar
Eggleton, B.J.: Chalcogenide photonics: Fabrication, devices and applications. Opt. Express 18, 26632 (2010).Google Scholar
Eggleton, B.J., Luther-Davies, B., and Richardson, K.: Chalcogenide photonics. Nat. Photonics 5, 141 (2011).Google Scholar
Zhang, X.H., Bureau, B., Lucas, P., Boussard-Pledel, C., and Lucas, J.: Glasses for seeing beyond visible. Chem. -Eur. J. 14, 432 (2008).Google Scholar
Bureau, B., Maurugeon, S., Charpentier, F., Adam, J-L., Boussard-Pledel, C., and Zhang, X-H.: Chalcogenide glass fibers for infrared sensing and space optics. Fiber Integr. Opt. 28, 65 (2009).CrossRefGoogle Scholar
Bureau, B., Zhang, X.H., Smektala, F., Adam, J-L., Troles, J., Ma, H., Boussard-Pledel, C., Lucas, J., Lucas, P., Le Coq, D., Riley, M.R., and Simmons, J.H.: Recent advances in chalcogenide glasses. J. Non-Cryst. Solids 345346, 276 (2004).Google Scholar
Houizot, P., Boussard-Pledel, C., Faber, A.J., Cheng, L.K., Bureau, B., Van Nijnatten, P.A., Gielesen, W.L.M., Pereira do Carmo, J., and Lucas, J.: Infrared single mode chalcogenide glass fiber for space. Opt. Express 15, 12529 (2007).Google Scholar
Danto, S., Houizot, P., Boussard-Pledel, C., Zhang, X-H., Smektala, F., and Lucas, J.: A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Adv. Funct. Mater. 16, 1847 (2006).Google Scholar
Shimakawa, K., Kolobov, A., and Elliott, S.R.: Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 44, 475 (1995).Google Scholar
Shpotyuk, O.I.: Radiation-induced effects in chalcogenide vitreous semiconductors. In Semiconductors and Semimetals, Fairman, R. and Ushkov, B. eds.; Elsevier Academic Press: Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2004; pp. 215260.Google Scholar
Pikaev, A.K.: Modern Radiation Chemistry: Main Principles, Experimental Technique and Methods (Nauka, Moskow, 1985), p. 375.Google Scholar
Domoryad, I.A., Kaypnazarov, D., and Khiznichenko, L.P.: Influence of gamma-irradiation on the elastic properties of vitreous arsenic trisulphide. Izv. AN Uzb. SSR, Ser. Phys. 5, 87 (1963). (in Russian).Google Scholar
Domoryad, I.A.: Hardness of γ-irradiated As2S3 glass. In Radiation-Stimulated Processes in Solids (FAN, Tashkent, 1969), pp. 5759. (in Russian).Google Scholar
Kolomiets, B.T., Mamontova, T.N., Domoryad, I.A., and Babaev, A.A.: Photoluminescence in γ-irradiated vitreous and monocrystalline As2S3 and As2Se3 . Phys. Status Solidi A 7, K29 (1971).Google Scholar
Domoryad, I.A. and Kolomiets, B.T.: Changes in elastic properties of glasses of As2S3-As2Se3 system under the influence of penetrating radiation. Izv. AN USSR, Ser. Inorg. Mater. 7, 1620 (1971). (in Russian).Google Scholar
Popov, A.I., Domoryad, I.A., and Michalev, N.I.: Structural modification of arsenic chalcogenide glasses under γ-radiation. Phys. Status Solidi A 106, 333 (1988).Google Scholar
Shpotyuk, O.I.: Gamma-stimulated changes in optical properties of chalcogenide vitreous semiconductors. Ukr. Phys. J. 35, 1545 (1990). (in Russian).Google Scholar
Shpotyuk, O.I., Kovalskii, A.P., Vakiv, M.M., and Mrooz, O.Y.: Reversible radiation effects in vitreous As2S3. I. Changes of physical properties. Phys. Status Solidi A 144, 277 (1994).Google Scholar
Konorova, L.F., Kim, T.I., Zhdanovich, N.S., and Litovskii, M.A.: Influence of γ-quanta on the IR absorption of chalcogenide vitreous alloys. Russ. J. Appl. Phys. 55, 788 (1985). (in Russian).Google Scholar
Shpotyuk, O.I.: Reversible radiation effects in vitreous As2S3. II. Mechanism of structural transformations. Phys. Status Solidi A 145, 69 (1994).Google Scholar
Shpotyuk, O.I. and Matkovskii, A.O.: Radiation-optical properties of vitreous As2S3 . Opto-Electron. Rev. 2, 100 (1994).Google Scholar
Street, R.A. and Mott, N.F.: States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293 (1975).CrossRefGoogle Scholar
Biegelsen, D.K. and Street, R.A.: Photoinduced defects in chalcogenide glasses. Phys. Rev. Lett. 44, 803 (1980).Google Scholar
Shpotyuk, O. and Filipecki, J.: Radiation-induced defects in vitreous chalcogenide semiconductors studied by positron annihilation method. Mater. Sci. Eng., B 9192, 537 (2002).CrossRefGoogle Scholar
Krause-Rehberg, R. and Leipner, H.: Positron Annihilation in Semiconductors (Springer, Heidelberg, 1999), p. 378.Google Scholar
Shpotyuk, O. and Filipecki, J.: Free Volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study (Wydawnictwo WSP w Czestochowie, Czestochowa, 2003), p. 114.Google Scholar
Tuomisto, F. and Makkonen, I.: Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev. Mod. Phys. 85, 1583 (2013).Google Scholar
Shpotyuk, O., Balitska, V., Filipecki, J., and Hyla, M.: Radiation modified chalcogenide glasses tested with positron lifetime annihilation spectroscopy technique. Phys. Chem. Glasses 49, 310 (2008).Google Scholar
Balitska, V., Shpotyuk, Y., Filipecki, J., Shpotyuk, O., and Iovu, M.: Post-irradiation in vitreous arsenic/antimony trisulphides. J. Non-Cryst. Solids 357, 487 (2011).CrossRefGoogle Scholar
Golovchak, R., Shpotyuk, O., Kozdras, A., Riley, B.J., Sundaram, S.K., and McCloy, J.S.: Radiation effects in physical aging of binary As-S and As-Se glasses. J. Therm. Anal. Calorim. 103, 213 (2011).Google Scholar
Lucas, P., King, E.A., Erdmann, R.G., Riley, B.J., Sundaram, S.K., and McCloy, J.S.: Thermal and gamma-ray induced relaxation in As–S glasses: Modelling and experiment. J. Phys. D: Appl. Phys. 44, 395402 (2011).Google Scholar
Saiter, J.M.: Physical ageing in chalcogenide glasses. J. Optoelectron. Adv. Mater. 3, 685 (2001).Google Scholar
Chakravarty, S., Georgiev, D.G., Boolchand, P., and Micoulaut, M.: Ageing, fragility and the reversibility window in bulk alloy glasses. J. Phys.: Condens. Matter 17, L1 (2005).Google Scholar
McCloy, J.S., Riley, B.J., Sundaram, S.K., Qiao, H.A., Crum, J.V., and Johnson, B.R.: Structure-optical property correlations of arsenic sulfide glasses in visible, infrared, and sub-millimeter regions. J. Non-Cryst. Solids 356, 1288 (2010).Google Scholar
Shpotyuk, M., Shpotyuk, O., Golovchak, R., McCloy, J., and Riley, B.: Compositional trends of γ-induced optical changes observed in chalcogenide glasses of binary As-S system. J. Non-Cryst. Solids 386, 95 (2014).Google Scholar
Kansy, J.: Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A 374, 235 (1996).Google Scholar
Jensen, K.O., Salmon, P.S., Penfold, I.T., and Coleman, P.G.: Microvoids in chalcogenide glasses studied by positron annihilation. J. Non-Cryst. Solids 170, 57 (1994).Google Scholar
Shpotyuk, O., Ingram, A., Shpotyuk, M., and Filipecki, J.: Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 66 (2014).CrossRefGoogle Scholar
Popov, A.: Atomic structure and structural modification of glass. In Semiconductors and Semimetals, Fairman, R. and Ushkov, B. eds.; Elsevier Academic Press: Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2004; pp. 5195.Google Scholar
Shpotyuk, O.I., Kornelyuk, V.N., and Yaskovets, I.I.: Reversible photostructural transformations in thin films of arsenic trisulfide. J. Appl. Spectrosc. 52, 395 (1990).Google Scholar
Golovchak, R., Kozdras, A., and Shpotyuk, O.: Optical signature of structural relaxation in glassy As10Se90 . J. Non-Cryst. Solids 356, 1149 (2010).Google Scholar
Golovchak, R., Kozdras, A., Shpotyuk, O., Gorecki, C., Kovalskiy, A., and Jain, H.: Temperature-dependent structural relaxation in As40Se60 glass. Phys. Lett. A 375, 3032 (2011).CrossRefGoogle Scholar
Golovchak, R., Ingram, A., Kozyukhin, S., and Shpotyuk, O.: Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy. J. Non-Cryst. Solids 377, 49 (2013).Google Scholar