Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T22:59:03.513Z Has data issue: false hasContentIssue false

Atomistic modeling of radiation-induced disordering and dissolution at a Ni/Ni3Al interface

Published online by Cambridge University Press:  20 January 2015

Tongsik Lee*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Massachusetts 02139, USA
Alfredo Caro
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, New Mexico 87545, USA
Michael J. Demkowicz
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Massachusetts 02139, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

L12-ordered γ′ precipitates embedded in a fcc γ matrix impart excellent mechanical properties to nickel-base superalloys. However, these enhanced mechanical properties are lost under irradiation, which causes the γ′ precipitates to disorder and dissolve. We conduct an atomic-level study of radiation-induced disordering and dissolution at a coherent (100) facet of an initially ordered γ′ Ni3Al precipitate neighboring a pure Ni γ matrix. Using molecular dynamics, we simulate collision-induced events by sequentially introducing 10 keV primary knock-on atoms with random positions and directions. In the absence of thermally assisted recovery processes, the ordered Ni3Al layer disorders rapidly within 0.1–0.2 dpa and then gradually dissolves into the adjacent Ni layer at higher doses. Both the disordering efficiency and mixing parameter calculated from the simulations lie within the range of values found by experiments carried out at room temperature, where thermally activated diffusion is insignificant.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: William J. Weber

References

REFERENCES

Reed, R.C.: The Superalloys: Fundamentals and Applications, 1st ed. (Cambridge University Press, New York, NY, 2006).Google Scholar
Nelson, R.S., Hudson, J.A., and Mazey, D.J.: Stability of precipitates in an irradiation environment. J. Nucl. Mater. 44, 318 (1972).CrossRefGoogle Scholar
Potter, D.I. and Hoff, H.A.: Irradiation effects on precipitation in γ/γ′ Ni-Al alloys. Acta Metall. Mater. 24, 1155 (1976).CrossRefGoogle Scholar
Potter, D.I. and Ryding, D.G.: Precipitate coarsening, redistribution and renucleation during irradiation of Ni-6.35 wt% Al. J. Nucl. Mater. 71, 14 (1977).Google Scholar
Bourdeau, F., Camus, E., Abromeit, C., and Wollenberger, H.: Disordering and dissolution of γ′ precipitates under ion irradiation. Phys. Rev. B 50, 16205 (1994).CrossRefGoogle ScholarPubMed
Camus, E., Abromeit, C., Bourdeau, F., Wanderka, N., and Wollenberger, H.: Evolution of long-range order and composition for radiation-induced precipitate dissolution. Phys. Rev. B 54, 3142 (1996).Google Scholar
Ewert, J.C., Schmitz, G., Harbsmeier, F., Uhrmacher, M., and Haider, F.: Ion induced disordering and dissolution of Ni3Al precipitates. Appl. Phys. Lett. 73, 3363 (1998).CrossRefGoogle Scholar
Schmitz, G., Ewert, J.C., Harbsmeier, F., Uhrmacher, M., and Haider, F.: Phase stability of decomposed Ni-Al alloys under ion irradiation. Phys. Rev. B 63, 224113 (2001).Google Scholar
Zhang, H.K., Yao, Z., Judge, C., and Griffiths, M.: Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation. J. Nucl. Mater. 443, 49 (2013).CrossRefGoogle Scholar
Zhang, H.K., Yao, Z., Kirk, M.A., and Daymond, M.R.: Stability of Ni3(Al, Ti) gamma prime precipitates in a nickel-based superalloy Inconel X-750 under heavy ion irradiation. Metall. Mater. Trans. A 45A, 3422 (2014).CrossRefGoogle Scholar
Sun, C., Hatter, K., Pollock, T., Wang, Y., Anderoglu, O., Valdez, J., Uberuaga, B.P., DIckson, R., and Maloy, S.A.: (2014, unpublished).Google Scholar
Martin, G.: Phase-stability under irradiation: Ballistic effects. Phys. Rev. B 30, 1424 (1984).Google Scholar
Przybylowicz, M., Bellon, P., and Martin, G.: Modeling of ordered precipitates under irradiation: Dissolution regimes and interfacial width. Proceedings of an International Conference on Solid: Solid Phase Transformations, 1994, p. 999.Google Scholar
Matsumura, S., Tanaka, Y., Müller, S., and Abromeit, C.: Formation of precipitates in an ordering alloy and their dissolution under irradiation. J. Nucl. Mater. 239, 42 (1996).Google Scholar
Martin, G. and Bellon, P.: Driven Alloys. Solid State Physics: Advances in Research and Applications, 50, 189 (1997).Google Scholar
Abromeit, C., Camus, E., and Matsumura, S.: Modelling of dissolution profiles of ordered particles under irradiation. J. Nucl. Mater. 271, 246 (1999).CrossRefGoogle Scholar
Ewert, J.C. and Schmitz, G.: Reordering kinetics of ion-disordered Ni3Al. Eur. Phys. J. B 17, 391 (2000).CrossRefGoogle Scholar
Ye, J., Li, Y.H., Averback, R., Zuo, J.M., and Bellon, P.: Atomistic modeling of nanoscale patterning of L12 order induced by ion irradiation. J. Appl. Phys. 108, 054302 (2010).CrossRefGoogle Scholar
Diaz de la Rubia, T., Caro, A., and Spaczér, M.: Kinetics of radiation-induced disordering of A3B intermetallic compounds: A molecular-dynamics-simulation study. Phys. Rev. B 47, 11483 (1993).Google Scholar
Diaz de la Rubia, T., Caro, A., Spaczér, M., Janaway, G.A., Guinan, M.W., and Victoria, M.: Radiation-induced disordering and defect production in Cu3Au and Ni3Al studied by molecular-dynamics simulation. Nucl. Instrum. Methods Phys. Res., Sect. B 80–81, 86 (1993).CrossRefGoogle Scholar
Spaczér, M., Caro, A., Victoria, M., and Diaz de la Rubia, T.: Computer-simulations of disordering kinetics in irradiated intermetallic compounds. Phys. Rev. B 50, 13204 (1994).Google Scholar
Spaczér, M., Caro, A., Victoria, M., and de la Rubia, T.D.: Computer-simulation of disordering kinetics in irradiated A3B intermetallic compounds. J. Nucl. Mater. 212–215, 164 (1994).Google Scholar
Spaczér, M., Caro, A., and Victoria, M.: Evidence of amorphization in molecular-dynamics simulations on irradiated intermetallic NiAl. Phys. Rev. B 52, 7171 (1995).Google Scholar
Spaczér, M., Caro, A., Victoria, M., and de la Rubia, T.D.: Computer-simulations of disordering and amorphization kinetics in intermetallic compounds. Nucl. Instrum. Methods Phys. Res., Sect. B 102, 81 (1995).CrossRefGoogle Scholar
Gao, F. and Bacon, D.J.: Molecular-dynamics study of displacement cascades in Ni3Al. 1. General features and defect production efficiency. Philos. Mag. A 71, 43 (1995).CrossRefGoogle Scholar
Gao, F. and Bacon, D.J.: Molecular-dynamics study of displacement cascades in Ni3Al. 2. Kinetics, disordering and atomic mixing. Philos. Mag. A 71, 65 (1995).CrossRefGoogle Scholar
Almazouzi, A., Alurralde, M., Spaczer, M., and Victoria, M.: Disordering in the Ni-Al system under low dose ion-irradiation: A computer simulation study. Mat. Res. Soc. Symp. Proc. 481, 371 (1998).Google Scholar
Gao, F. and Bacon, D.J.: MD investigation of thermal spike effects on defect production and disordering by displacement cascades in Ni3Al. Microstructural Processes in Irradiated Materials 540, 661 (1999).Google Scholar
Gao, F. and Bacon, D.J.: Temperature effects on defect production and disordering by displacement cascades in Ni3Al. Mat. Res. Soc. Symp. Proc. 80, 1453 (2000).Google Scholar
Skirlo, S.A. and Demkowicz, M.J.: The role of thermal spike compactness in radiation-induced disordering and Frenkel pair production in Ni3Al. Scr. Mater. 67, 724 (2012).Google Scholar
Zhang, L. and Demkowicz, M.J.: Radiation-induced mixing between metals of low solid solubility. Acta Mater. 76, 135 (2014).CrossRefGoogle Scholar
Averback, R.S., Peak, D., and Thompson, L.J.: Ion-beam mixing in pure and in immiscible copper bilayer systems. Appl. Phys. A 39, 59 (1986).CrossRefGoogle Scholar
Müller, S.: Doctoral Thesis, Universität Berlin, Berlin, Germany, 1997.Google Scholar
de Almeida, P., Schäublin, R., Almazouzi, A., Victoria, M., and Döbeli, M.: Quantitative long-range-order measurement and disordering efficiency estimation in ion-irradiated bulk Ni3Al using cross-sectional conventional transmission electron microscopy. Appl. Phys. Lett. 77, 2680 (2000).Google Scholar
Ardell, A.J. and Nicholson, R.B.: Coarsening of γ′ in Ni-Al alloys. J. Phys. Chem. Solids 27, 1793 (1966).CrossRefGoogle Scholar
Ardell, A.J. and Nicholson, R.B.: On modulated structure of aged Ni-Al alloys. Acta Met. 14, 1295 (1966).CrossRefGoogle Scholar
Ardell, A.J.: An application of theory of particle coarsening – γ′ precipitate in Ni-Al alloys. Acta Met. 16, 511 (1968).CrossRefGoogle Scholar
Daw, M.S. and Baskes, M.I.: Semiempirical, quantum-mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).Google Scholar
Mishin, Y.: Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Mater. 52, 1451 (2004).Google Scholar
Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon, New York, NY, 1985).Google Scholar
Purja Pun, G.P. and Mishin, Y.: Development of an interatomic potential for the Ni-Al system. Philos. Mag. 89, 3245 (2009).CrossRefGoogle Scholar
Schwen, D. and Caro, A.: (2014, unpublished).Google Scholar
Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids (Oxford University Press, New York, NY, 1987).Google Scholar
de Almeida, P.: The Order-disorder Transformation and Microstructural Evolution in Nickel-Aluminium Intermetallics After Heavy-Ion Irradiation. Doctoral Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000.Google Scholar
Averback, R.S.: Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49 (1994).CrossRefGoogle Scholar
Stoller, R.E.: Point defect survival and clustering fractions obtained from molecular dynamics simulations of high energy cascades. J. Nucl. Mater. 233–237, 999 (1996).CrossRefGoogle Scholar
Nordlund, K., Ghaly, M., Averback, R.S., and Caturla, M., Diaz de la Rubia, T. and Tarus, J.: Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B 57, 7556 (1998).Google Scholar
Bacon, D.J., Osetsky, Y.N., Stoller, R., and Voskoboinikov, R.E.: MD description of damage production in displacement cascades in copper and alpha-iron. J. Nucl. Mater. 323, 152 (2003).CrossRefGoogle Scholar
Malerba, L.: Molecular dynamics simulation of displacement cascades in α-Fe: A critical review. J. Nucl. Mater. 351, 28 (2006).CrossRefGoogle Scholar
Norgett, M.J., Robinson, M.T., and Torrens, I.M.: Proposed method of calculating displacement dose-rates. Nucl. Eng. Des. 33, 50 (1975).Google Scholar
Caro, A., Victoria, M., and Averback, R.S.: Threshold displacement and interstitial-atom formation energies in Ni3Al. J. Mater. Res. 5, 1409 (1990).Google Scholar
Zhu, H., Averback, R.S., and Nastasi, M.: Molecular-dynamics simulations of a 10 keV cascade in β-NiAl. Philos. Mag. A 71, 735 (1995).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).Google Scholar
Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012).Google Scholar
Cowley, J.M.: An approximate theory of order in alloys. Phys. Rev. 77, 669 (1950).Google Scholar
Bacon, D.J. and Diaz de la Rubia, T.: Molecular-dynamics computer-simulations of displacement cascades in metals. J. Nucl. Mater. 216, 275 (1994).Google Scholar
Aronin, L.R.: Radiation damage effects on order-disorder in nickel-manganese alloys. J. Appl. Phys. 25, 344 (1954).Google Scholar
Russell, K.C.: Phase-stability under irradiation. Prog. Mater. Sci. 28(3–4), 229 (1984).Google Scholar
Balluffi, R.W., Allen, S.M., and Carter, W.C.: Kinetics of Materials 1 (John Wiley and Sons, Inc., Hoboken, NJ, 2005).CrossRefGoogle Scholar
Sadigh, B., Erhart, P., Stukowski, A., Caro, A., Martinez, E., and Zepeda-Ruiz, L.: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B 85, 184203 (2012).Google Scholar
Komarov, F.F.: Ion Beam Modification of Metals (Gordon & Breach Science, Philadelphia, PA, 1992).Google Scholar
Flynn, C.P. and Averback, R.S.: Electron-phonon interactions in energetic displacement cascades. Phys. Rev. B 38, 7118 (1988).Google Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).Google Scholar
Voter, A.F.: Introduction to the kinetic Monte Carlo method. NATO Sci. Ser., II 235, 1 (2007).Google Scholar
Martínez, E., Marian, J., Kalos, M.H., and Perlado, J.M.: Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J. Comput. Phys. 227, 3804 (2008).Google Scholar
Voter, A.F., Montalenti, F., Germann, T.C., Uberuaga, B.P., and Sprague, J.A.: Accelerated molecular dynamics methods. Abstr. Pap. Am. Chem. Soc. 223, U500 (2002).Google Scholar
Bai, X.-M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).CrossRefGoogle ScholarPubMed