Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T17:46:11.525Z Has data issue: false hasContentIssue false

Atomic mapping of structural distortions in 109° domain patterned BiFeO3 thin films

Published online by Cambridge University Press:  09 June 2017

Wen-Yuan Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Science and Technology on Surface Physics and Chemistry Laboratory, 621908 Jiangyou, Sichuan, China
Yin-Lian Zhu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Yun-Long Tang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Meng-Jiao Han
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Yu-Jia Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Xiu-Liang Ma*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and School of Materials Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Structural distortions at the nanoscale are delicately linked with many exotic properties for ferroic thin films. Based on advanced aberration corrected scanning transmission electron microscopy, we observe BiFeO3 thin films with variant tensile strain states and demonstrate at an atomic scale the interplay of intrinsic spontaneous structural distortions with external constraints. Structural parameters (the rhombohedral distortion and domain wall shear distortion) under zero (BiFeO3/GdScO3) and 1.5% (BiFeO3/PrScO3) lateral strain states are quantitatively analyzed which are suppressed within a few unit cells near the film/substrate interfaces. In particular, an interfacial layer with asymmetrical lattice distortions (enhanced and reduced out-of-plane lattice spacing) on the two sides of 109° domain wall is resolved. These structural distortions near the film/substrate interface in ferroic thin films reveal intense tanglement of intrinsic distortions of BiFeO3 with external boundary conditions, which could provide new insights for the development of nanoscale ferroelectric devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Cewen Nan

References

REFERENCES

Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).CrossRefGoogle ScholarPubMed
Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).CrossRefGoogle ScholarPubMed
Martin, L.W. and Ramesh, R.: Multiferroic and magnetoelectric heterostructures. Acta Mater. 60, 2449 (2012).CrossRefGoogle Scholar
Schlom, D.G., Chen, L-Q., Eom, C-B., Rabe, K.M., Streiffer, S.K., and Triscone, J-M.: Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589 (2007).CrossRefGoogle Scholar
Schlom, D.G., Chen, L-Q., Fennie, C.J., Gopalan, V., Muller, D.A., Pan, X., Ramesh, R., and Uecker, R.: Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118 (2014).CrossRefGoogle Scholar
Lee, J.H., Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Kourkoutis, L.F., Kim, J.W., Ryan, P.J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P.C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., and Schlom, D.G.: A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954 (2010).CrossRefGoogle Scholar
Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., and Schlom, D.G.: Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758 (2004).CrossRefGoogle ScholarPubMed
Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L-Q., Schlom, D.G., and Eom, C.B.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).CrossRefGoogle ScholarPubMed
Catalan, G., Lubk, A., Vlooswijk, A.H.G., Snoeck, E., Magen, C., Janssens, A., Rispens, G., Rijnders, G., Blank, D.H.A., and Noheda, B.: Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963 (2011).CrossRefGoogle ScholarPubMed
Tang, Y.L., Zhu, Y.L., Ma, X.L., Borisevich, A.Y., Morozovska, A.N., Eliseev, E.A., Wang, W.Y., Wang, Y.J., Xu, Y.B., Zhang, Z.D., and Pennycook, S.J.: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547 (2015).CrossRefGoogle ScholarPubMed
Infante, I.C., Lisenkov, S., Dupé, B., Bibes, M., Fusil, S., Jacquet, E., Geneste, G., Petit, S., Courtial, A., Juraszek, J., Bellaiche, L., Barthélémy, A., and Dkhil, B.: Bridging multiferroic phase transitions by epitaxial strain in BiFeO3 . Phys. Rev. Lett. 105, 057601 (2010).CrossRefGoogle ScholarPubMed
Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.H., Kumar, A., Wang, C.H., Melville, A., Adamo, C., Sheng, G., Chu, Y.H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., and Ramesh, R.: A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977 (2009).CrossRefGoogle ScholarPubMed
Yang, J.C., He, Q., Suresha, S.J., Kuo, C.Y., Peng, C.Y., Haislmaier, R.C., Motyka, M.A., Sheng, G., Adamo, C., Lin, H.J., Hu, Z., Chang, L., Tjeng, L.H., Arenholz, E., Podraza, N.J., Bernhagen, M., Uecker, R., Schlom, D.G., Gopalan, V., Chen, L.Q., Chen, C.T., Ramesh, R., and Chu, Y.H.: Orthorhombic BiFeO3 . Phys. Rev. Lett. 109, 247606 (2012).CrossRefGoogle ScholarPubMed
Chu, Y.H., Cruz, M.P., Yang, C.H., Martin, L.W., Yang, P.L., Zhang, J.X., Lee, K., Yu, P., Chen, L.Q., and Ramesh, R.: Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662 (2007).CrossRefGoogle Scholar
Chu, Y.H., Zhan, Q., Martin, L.W., Cruz, M.P., Yang, P.L., Pabst, G.W., Zavaliche, F., Yang, S.Y., Zhang, J.X., Chen, L.Q., Schlom, D.G., Lin, I.N., Wu, T.B., and Ramesh, R.: Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307 (2006).CrossRefGoogle Scholar
Seidel, J.: Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905 (2012).CrossRefGoogle Scholar
Streiffer, S.K., Parker, C.B., Romanov, A.E., Lefevre, M.J., Zhao, L., Speck, J.S., Pompe, W., Foster, C.M., and Bai, G.R.: Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742 (1998).CrossRefGoogle Scholar
Romanov, A.E., Lefevre, M.J., Speck, J.S., Pompe, W., Streiffer, S.K., and Foster, C.M.: Domain pattern formation in epitaxial rhombohedral ferroelectric films. II. Interfacial defects and energetics. J. Appl. Phys. 83, 2754 (1998).CrossRefGoogle Scholar
Huang, C.W., Chen, Z.H., and Chen, L.: Thickness-dependent evolutions of domain configuration and size in ferroelectric and ferroelectric-ferroelastic films. J. Appl. Phys. 113, 094101 (2013).CrossRefGoogle Scholar
Huang, C.W., Chen, L., Wang, J., He, Q., Yang, S.Y., Chu, Y.H., and Ramesh, R.: Phenomenological analysis of domain width in rhombohedral BiFeO3 films. Phys. Rev. B 80, 140101 (2009).CrossRefGoogle Scholar
Giencke, J.E., Folkman, C.M., Baek, S.H., and Eom, C.B.: Tailoring the domain structure of epitaxial BiFeO3 thin films. Curr. Opin. Solid State Mater. Sci. 18, 39 (2014).CrossRefGoogle Scholar
Li, L., Gao, P., Nelson, C.T., Jokisaari, J.R., Zhang, Y., Kim, S-J., Melville, A., Adamo, C., Schlom, D.G., and Pan, X.: Atomic scale structure changes induced by charged domain walls in ferroelectric materials. Nano Lett. 13, 5218 (2013).CrossRefGoogle ScholarPubMed
Nelson, C.T., Winchester, B., Zhang, Y., Kim, S-J., Melville, A., Adamo, C., Folkman, C.M., Baek, S-H., Eom, C-B., Schlom, D.G., Chen, L-Q., and Pan, X.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).CrossRefGoogle ScholarPubMed
Wang, W-Y., Tang, Y-L., Zhu, Y-L., Xu, Y-B., Liu, Y., Wang, Y-J., Jagadeesh, S., and Ma, X-L.: Atomic level 1D structural modulations at the negatively charged domain walls in BiFeO3 films. Adv. Mater. Interfaces 2, 1500024 (2015).CrossRefGoogle Scholar
Wang, W.Y., Zhu, Y.L., Tang, Y.L., Xu, Y.B., Liu, Y., Li, S., Zhang, S.R., Wang, Y.J., and Ma, X.L.: Large scale arrays of four-state vortex domains in BiFeO3 thin film. Appl. Phys. Lett. 109, 202904 (2016).CrossRefGoogle Scholar
Liferovich, R.P. and Mitchell, R.H.: A structural study of ternary lanthanide orthoscandate perovskites. J. Solid State Chem. 177, 2188 (2004).CrossRefGoogle Scholar
Anthony, S.M. and Granick, S.: Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 8152 (2009).CrossRefGoogle ScholarPubMed
Chu, Y.H., He, Q., Yang, C.H., Yu, P., Martin, L.W., Shafer, P., and Ramesh, R.: Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 9, 1726 (2009).Google ScholarPubMed
Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.H., Rother, A., Hawkridge, M.E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S.V., Gemming, S., Wang, F., Catalan, G., Scott, J.F., Spaldin, N.A., Orenstein, J., and Ramesh, R.: Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009).CrossRefGoogle ScholarPubMed
He, Q., Yeh, C.H., Yang, J.C., Singh-Bhalla, G., Liang, C.W., Chiu, P.W., Catalan, G., Martin, L.W., Chu, Y.H., Scott, J.F., and Ramesh, R.: Magnetotransport at domain walls in BiFeO3 . Phys. Rev. Lett. 108, 067203 (2012).CrossRefGoogle ScholarPubMed
Chen, Z.H., Damodaran, A.R., Xu, R., Lee, S., and Martin, L.W.: Effect of “symmetry mismatch” on the domain structure of rhombohedral BiFeO3 thin films. Appl. Phys. Lett. 104, 182908 (2014).CrossRefGoogle Scholar
Chen, Z., Qi, Y., You, L., Yang, P., Huang, C.W., Wang, J., Sritharan, T., and Chen, L.: Large tensile-strain-induced MB phase in BiFeO3 epitaxial thin films on a PrScO3 . Phys. Rev. B 88, 054114 (2013).CrossRefGoogle Scholar
Qi, Y.J., Chen, Z.H., Huang, C.W., Wang, L.H., Han, X.D., Wang, J.L., Yang, P., Sritharan, T., and Chen, L.: Coexistence of ferroelectric vortex domains and charged domain walls in epitaxial BiFeO3 film on (110)O GdScO3 substrate. J. Appl. Phys. 111, 104117 (2012).CrossRefGoogle Scholar
Lubk, A., Rossell, M.D., Seidel, J., He, Q., Yang, S.Y., Chu, Y.H., Ramesh, R., Hÿtch, M.J., and Snoeck, E.: Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy. Phys. Rev. Lett. 109, 047601 (2012).CrossRefGoogle ScholarPubMed
Wang, Y., Nelson, C., Melville, A., Winchester, B., Shang, S., Liu, Z-K., Schlom, D.G., Pan, X., and Chen, L.Q.: BiFeO3 domain wall energies and structures: A combined experimental and density functional theory + U study. Phys. Rev. Lett. 110, 267601 (2013).CrossRefGoogle ScholarPubMed
Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V., and Pennycook, S.J.: Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).CrossRefGoogle ScholarPubMed
Kim, Y.M., Morozovska, A., Eliseev, E., Oxley, M.P., Mishra, R., Selbach, S.M., Grande, T., Pantelides, S.T., Kalinin, S.V., and Borisevich, A.Y.: Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/La x Sr1−x MnO3 interface. Nat. Mater. 13, 1019 (2014).CrossRefGoogle Scholar
Huang, R., Ding, H-C., Liang, W-I., Gao, Y-C., Tang, X-D., He, Q., Duan, C-G., Zhu, Z., Chu, J., Fisher, C.A.J., Hirayama, T., Ikuhara, Y., and Chu, Y-H.: Atomic-scale visualization of polarization pinning and relaxation at coherent BiFeO3/LaAlO3 interfaces. Adv. Funct. Mater. 24, 793 (2014).CrossRefGoogle Scholar