Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T05:37:52.520Z Has data issue: false hasContentIssue false

Atom probe tomography applied to the analysis of irradiated microstructures

Published online by Cambridge University Press:  27 January 2015

Emmanuelle A. Marquis*
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

With its particular ability to image solute clusters in three dimensions and impurity segregation to selected interfaces and grain boundaries, atom probe tomography has provided unique insight into the effects of irradiation on materials microstructures. This article reviews the contribution of atom probe tomography to our understanding of behaviors and responses of structural materials under irradiation. Possible atom probe tomography based approaches and common data analysis methods to analyze the microstructural features often observed in irradiated materials are described. In particular, the analysis of solute clustering, solute segregation, and void imaging are discussed in the context of radiation-induced hardening of austenitic steels and reactor pressure vessel steels, and the development of oxide dispersion strengthened steels, radiation-induced solute segregation to grain boundaries for stress corrosion cracking or corrosion issues, and to understand the swelling response of irradiated materials. While highlighting the unique information that atom probe tomography can offer, common limitations, current challenges, and outstanding technical questions regarding data analysis and interpretation are also presented.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Joel Ribis

References

REFERENCES

Zinkle, S.J. and Busby, J.T.: Structural materials for fission and fusion energy. Mater. Today 12, 1219 (2009).Google Scholar
Nanstad, R.K., Stoller, R.E., Miller, M.K., and Sokolov, M.A.: In-service degradation and life extension of nuclear reactor vessels: Combining experiments and modelling. In Proceedings of the First International Conference on Ageing Studies and Lifetime Extension of Materials, Mallison, L.G. ed.; Kluwer Academic/Plenum Publishers: New York, Oxford, 2001; pp. 565582.Google Scholar
Sokolov, M.A., Littrell, K.C., and Nanstad, R.K.: Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone M3LW-13OR0402012, Report on Small-Angle Neutron Scattering Experiments of Irradiated RPV Materials (Oak Ridge National Laboratory, 2012).Google Scholar
Cerezo, A., Warren, P.J., and Smith, G.D.W.: Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79, 251257 (1999).Google Scholar
Vurpillot, F., Gault, B., Geiser, B.P., and Larson, D.J.: Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930 (2013).Google Scholar
Kelly, T.F. and Miller, M.K.: Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).Google Scholar
Gault, B., Moody, M.P., Cairney, J.M., and Ringer, S.P.: Atom Probe Microscopy (Springer, 2012).Google Scholar
Miller, M.K. and Hetherington, M.G.: Local magnification effects in the atom probe. Surf. Sci. 246, 442449 (1991).Google Scholar
De Geuser, F., Gault, B., Bostel, A., and Vurpillot, F.: Correlated field evaporation as seen by atom probe tomography. Surf. Sci. 601, 536543 (2007).Google Scholar
Da Costa, G., Wang, H., Duguay, S., Bostel, A., Blavette, D., and Deconihout, B.: Advance in multi-hit detection and quantization in atom probe tomography. Rev. Sci. Instrum. 83, 123709 (2012).Google Scholar
Miller, M.K. and Smith, G.D.W.: An atom probe study of the anomalous evaporation of alloys containing Si. Ultramicroscopy 5, 238239 (1980).Google Scholar
Marquis, E.A., Geiser, B.P., Prosa, T.J., and Larson, D.J.: Evolution of tip shape during field evaporation of complex multilayer structures. J. Microsc. 241, 225233 (2011).Google Scholar
Marquis, E.A. and Hyde, J.M.: Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng., R 69, 3762 (2010).CrossRefGoogle Scholar
Vaumousse, D., Cerezo, A., and Warren, P.J.: A procedure for quantification of precipitates microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215221 (2003).Google Scholar
Stephenson, L.T., Moody, M.P., Liddicoat, P.V., and Ringer, S.P.: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc. Microanal. 13, 448463 (2007).Google Scholar
Cerezo, A. and Davin, L.: Aspects of the observation of clusters in the 3-dimensional atom probe. Surf. Interface Anal. 39, 184188 (2007).Google Scholar
Styman, P.D., Hyde, J.M., Wilford, K., and Smith, G.D.W.: Quantitative methods for the APT analysis of thermally aged RPV steels. Ultramicroscopy 132, 258264 (2013).Google Scholar
Williams, C.A., Haley, D., Marquis, E.A., Smith, G.D.W., and Moody, M.P.: Defining clusters in APT reconstructions of ODS steels. Ultramicroscopy 132, 271278 (2012).Google Scholar
Burke, M.G. and Brenner, S.S.: Microstructural investigation of irradiated pressure vessel steel weld metal. J. Phys. Colloques 47, 239244 (1986).Google Scholar
Miller, M.K., Nanstad, R.K., Sokolov, M.A., and Russell, K.F.: The effects of irradiation, annealing and reirradiation on RPV steels. J. Nucl. Mater. 351, 216222 (2006).Google Scholar
Auger, P., Pareige, P., Welzel, S., and Van Duysen, J.C.: Synthesis of atom probe experiments on irradiation-induced solute segregation in French ferritic pressure vessel steels. J. Nucl. Mater. 280, 331344 (2000).Google Scholar
Odette, G.R.: Radiation induced microstructural evolution in reactor pressure vessel steels. MRS Symp. 373, 137 (1995).Google Scholar
Miller, M.K., Powers, K.A., Nanstad, R.K., and Efsing, P.: Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences. J. Nucl. Mater. 437, 107115 (2013).Google Scholar
Styman, P.D., Hyde, J.M., Wilford, K., Morley, A., and Smith, G.D.W.: Precipitation in long term thermally aged high copper, high nickel model RPV steel welds. Prog. Nucl. Energy 57, 8692 (2012).Google Scholar
Wells, P., Yamamoto, T., Milot, M.B.T., Cole, J., Wu, Y., and Odette, G.R.: Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels. Acta Mater. 80, 205219 (2014).Google Scholar
Odette, G.R., Liu, C.L., and Wirth, B.D.: On the composition and structure of nanoprecipitates in irradiated pressure vessel steels. Mater. Res. Soc. Symp. Proc. 439, 457 (1997).Google Scholar
Miller, M.K., Wirth, B.D., and Odette, G.R.: Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: A comparison of APT and SANS data. Mater. Sci. Eng., A 353, 133139 (2003).Google Scholar
Morley, A., Sha, G., Hirosawa, S., Cerezo, A., and Smith, G.D.W.: Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix. Ultramicroscopy 109, 535540 (2009).Google Scholar
Novy, S., Pareige, P., and Pareige, C.: Atomic scale analysis and phase separation understanding in a thermally aged Fe–20 at.%Cr alloy. J. Nucl. Mater. 384, 96102 (2009).Google Scholar
Bachhav, M., Robert Odette, G., and Marquis, E.A.: α′ precipitation in neutron-irradiated Fe–Cr alloys. Scr. Mater. 74, 4851 (2014).Google Scholar
Chen, Y., Chou, P.H., and Marquis, E.A.: Quantitative atom probe tomography characterization of microstructures in a proton irradiated 304 stainless steel. J. Nucl. Mater. 451, 130136 (2014).Google Scholar
Odette, G.R., Alinger, M.J., and Wirth, B.D.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471503 (2008).Google Scholar
Larson, D.J., Maziasz, P.J., Kim, I.S., and Miyahara, K.: Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy. Scr. Mater. 44, 359364 (2001).Google Scholar
Miller, M.K., Kenik, E.A., Russell, K.F., Heatherly, L., Hoelzer, D.T., and Maziasz, P.J.: Atom probe tomography of nanoscale particles in ODS ferritic alloys. Mater. Sci. Eng. A 353, 140145 (2003).Google Scholar
Miller, M.K., Russell, K.F., and Hoelzer, D.T.: Characterization of precipitates in MA/ODS ferritic alloys. J. Nucl. Mater. 351, 261268 (2006).Google Scholar
Brocq, M., Radiguet, B., Le Breton, J.M., Cuvilly, F., Pareige, P., and Legendre, F.: Nanoscale characterisation and clustering mechanism in an Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing. Acta Mater. 58, 18061814 (2010).Google Scholar
Etienne, A., Cunningham, N.J., Wu, Y., and Odette, G.R.: Effects of friction stir welding and post-weld annealing on nanostructured ferritic alloy. Mater. Sci. Technol. 27, 724728 (2011).Google Scholar
Certain, A.G., Field, K.G., Allen, T.R., Miller, M.K., Bentley, J., and Busby, J.T.: Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525 degrees C proton irradiation. J. Nucl. Mater. 407, 29 (2010).Google Scholar
Williams, C.A., Smith, G.D.W., and Marquis, E.A.: The effect of Ti on the coarsening behavior of oxygen-rich nanoparticles in oxide-dispersion-strengthened steels after annealing at 1200 degrees C. Scr. Mater. 67, 108111 (2012).Google Scholar
Marquis, E.A.: Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe-Cr alloys. Appl. Phys. Lett. 93, (2008).Google Scholar
Wells, P., Cunningham, N.J., and Odette, G.R.: Recent progress on understanding and quantifying atom probe tomography artifacts for high evaporation rate nm-scale phases in Fe based alloys. In DOE/ER-0313/51, ed. Fusion Reactor Materials Program2011. pp. 921.Google Scholar
Larson, D.J., Marquis, E.A., Rice, P.M., Prosa, T.J., Geiser, B.P., Yang, S.H., and Parkin, S.S.P.: Manganese diffusion in annealed magnetic tunnel junctions with MgO tunnel barriers. Scr. Mater. 64, 673676 (2011).Google Scholar
Williams, C.A., Marquis, E.A., Cerezo, A., and Smith, G.D.W.: Nanoscale characterisation of ODS-Eurofer 97 steel: An atom-probe tomography study. J. Nucl. Mater. 400, 3745 (2010).Google Scholar
Klimenkov, M., Lindau, R., and Moslang, A.: New insights into the structure of ODS particles in the ODS-Eurofer alloy. J. Nucl. Mater. 386, 553556 (2009).CrossRefGoogle Scholar
Certain, A., Kuchibhatla, S., Shutthanandan, V., Hoelzer, D.T., and Allen, T.R.: Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 434, 311321 (2013).Google Scholar
Lescoat, M.L., Ribis, J., Chen, Y., Marquis, E.A., Bordas, E., Trocellier, P., Serruys, Y., Gentils, A., Kaïtasov, O., de Carlan, Y., and Legris, A.: Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose. Acta Mater. 78, 328340 (2014).Google Scholar
London, A.J., Lozano-Perez, S., Santra, S., Amirthapandian, S., Panigrahi, B.K., Sundar, C.S., and Grovenor, C.R.M.: Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels. J. Phys.: Conf. Ser. 522, 012028 (2014).Google Scholar
Lin, P., Palumbo, G., Erb, U., and Aust, K.T.: Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scr. Metall. Mater. 33, 13871392 (1995).CrossRefGoogle Scholar
Lejček, P.: Grain Boundary Segregation in Metals (Springer, 2010).Google Scholar
Watanabe, S., Takamatsu, Y., Sakaguchi, N., and Takahashi, H.: Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel. J. Nucl. Mater. 283287(Part 1), 152156 (2000).Google Scholar
Hu, R., Smith, G.D.W., and Marquis, E.A.: Effect of grain boundary orientation on radiation-induced segregation in a Fe-15.2 at%Cr alloy. Acta Mater. (2013).Google Scholar
Bachhav, M., Odette, G.R., and Marquis, E.A.: Microstructural changes in a neutron-irradiated Fe–6 at.%Cr alloy. J. Nucl. Mater. 453, 334339 (2014).Google Scholar
Mandal, S., Pradeep, K.G., Zaefferer, S., and Raabe, D.: A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries' five rotational degrees of freedom. Scr. Mater. 81, 1619 (2014).Google Scholar
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S., and Goto, S.: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2014).Google Scholar
Moody, M.P., Tang, F., Gault, B., Ringer, S.P., and Cairney, J.M.: Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493499 (2011).Google Scholar
Araullo-Peters, V.J., Gault, B., Shrestha, S.L., Yao, L., Moody, M.P., Ringer, S.P., and Cairney, J.M.: Atom probe crystallography: Atomic-scale 3-D orientation mapping. Scr. Mater. 66, 907910 (2012).Google Scholar
Felfer, P., Ceguerra, A., Ringer, S., and Cairney, J.: Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy 132, 100106 (2013).Google Scholar
Bachhav, M., Chen, Y., Marquis, E.A., and Geiser, B.: Measuring chemical segregation at grain boundaries by atom probe tomography. Microsc. Microanal. 19, 940941 (2013).Google Scholar
Krakauer, B.W. and Seidman, D.N.: Absolute atomic scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys. Rev. B 49, 6724 (1993).Google Scholar
Gault, B., Danoix, F., Hoummada, K., Mangelinck, D., and Leitner, H.: Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182191 (2012).Google Scholar
Toyama, T., Nozawa, Y., Van Renterghem, W., Matsukawa, Y., Hatakeyama, M., Nagai, Y., Al Mazouzi, A., and Van Dyck, S.: Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography. J. Nucl. Mater. 425, 7175 (2012).Google Scholar
Etienne, A., Radiguet, B., Cunningham, N.J., Odette, G.R., and Pareige, P.: Atomic scale investigation of radiation-induced segregation in austenitic stainless steels. J. Nucl. Mater. 406, 244250 (2010).Google Scholar
Etienne, A., Radiguet, B., Cunningham, N.J., Odette, G.R., Valiev, R., and Pareige, P.: Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels. Ultramicroscopy 111, 659663 (2011).Google Scholar
Miller, M.K., Pareige, P., and Burke, M.G.: Understanding pressure vessel steels: An atom probe perspective. Mater. Charact. 44, 235254 (2000).Google Scholar
Miller, M.K.: Atom probe tomography characterization of solute segregation to dislocations. Microsc. Res. Tech. 69, 359365 (2006).Google Scholar
Williams, C.A., Hyde, J.M., Smith, G.D.W., and Marquis, E.A.: Effects of heavy-ion irradiation on solute segregation to dislocations in oxide-dispersion-strengthened Eurofer 97 steel. Nucl Mater. 412, 105 (2011).Google Scholar
Bhattacharya, A., Meslin, E., Henry, J., Pareige, C., Décamps, B., Genevois, C., Brimbal, D., and Barbu, A.: Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys. Acta Mater. 78, 394403 (2014).Google Scholar
Brenner, S.S. and Seidman, D.N.: Field-ion microscope observations of voids in neutron-irradiated molybdenum. Radiat. Eff. Defects Solids 24, 7378 (1975).Google Scholar
Godfrey, T.J., Lewis, R.J., Smith, D.A., and Smith, G.D.W.: On the nature and distribution of defects in tungsten lamp wire. J. Less-Common Met. 44, 319326 (1976).Google Scholar
Miller, M.K., Longstreth-Spoor, L., and Kelton, K.F.: Detecting density variations and nanovoids. Ultramicroscopy 111, 469472 (2011).Google Scholar
Birdseye, P.J., Smith, D.A., and Smith, G.D.W.: Analogue investigations of electric field distribution and ion trajectories in the field ion microscope. J. Phys. D: Appl. Phys. 7, 1642 (1974).Google Scholar
Edmondson, P.D., Parish, C.M., Zhang, Y., Hallen, A., and Miller, M.K.: Helium bubble distributions in a nanostructured ferritic alloy. J. Nucl. Mater. 434, 210216 (2013).Google Scholar
Hyde, J.M., Burke, M.G., Smith, G.D.W., Styman, P., Swan, H., and Wilford, K.: Uncertainties and assumptions associated with APT and SANS characterisation of irradiation damage in RPV steels. J. Nucl. Mater. (2013).Google Scholar
Robertson, I.M., Schuh, C.A., Vetrano, J.S., Browning, N.D., Field, D.P., Jensen, D.J., Miller, M.K., Baker, I., Dunand, D.C., Dunin-Borkowski, R., Kabius, B., Kelly, T., Lozano-Perez, S., Misra, A., Rohrer, G.S., Rollett, A.D., Taheri, M.L., Thompson, G.B., Uchic, M., Wang, X-L., and Was, G.: Towards an integrated materials characterization toolbox. J. Mater. Res. 26, 13411383 (2011).Google Scholar