Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T12:02:18.620Z Has data issue: false hasContentIssue false

Analysis of the diffusion controlled growth of cobalt silicides in bulk and thin film couples

Published online by Cambridge University Press:  03 March 2011

T. Barge
Affiliation:
Laboratoire de Métallurgie associé au CNRS-URA443, Faculté des Sciences et Techniques de Saint Jéróme. Case 511, 13397 Marseille-Cedex 20, France: ES2, European silicon Structures, Z.I.Rousset, 13106 Rousset, France
P. Gas
Affiliation:
Laboratoire de Metallurgie associé au CNRS-URA443, Faculté des Sciences et Techniques de Saint Jerome, Case 511, 13397 Marseille-Cedex 20, France
F.M. d'Heurle
Affiliation:
IBM Research Laboratory, P.O. Box 218, Yorktown Heights, New York 10598
Get access

Abstract

The solid state reaction between Co and Si has been studied in bulk diffusion couples between 850 and 1100 °C. At the scale of the observations made, the three phases Co2Si, CoSi, and CoSi2 are found to grow simultaneously, according to diffusion controlled kinetics. The results are analyzed in term of the Nernst-Einstein equation that directly relates diffusion fluxes to the free energy changes driving the formation. The growth rates obtained for CoSi2 at high temperatures, in the present bulk samples, are compared with those determined by others in thin films, at much lower temperatures. The comparison requires that attention should be paid to two factors. The first one is that the laws of growth are slightly different for a phase growing simultaneously with two other ones (bulk) and one phase growing alone (thin films). The second factor is the grain size of the various samples, which varies with the temperature of reaction. Once this is done, excellent agreement is obtained between the two sets of measurements. Moreover it is shown that knowing the grain size, it is possible to calculate quite accurately the growth rate from the respective isotope diffusion coefficients both for lattice and grain boundaries of Co and Si in CoSi2.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Philibert, J., Defect and Diffusion Forum 66–69, 995 (1989).Google Scholar
2Guttmann, M., Materials Science Forum 155–156, 527 (1994).CrossRefGoogle Scholar
3d'Heurle, F.M., Materials Science Forum 155–156, 1 (1994).CrossRefGoogle Scholar
4Zhang, S. L. and d'Heurle, F.M., Materials Science Forum 155–156, 59 (1994).CrossRefGoogle Scholar
5Dybkov, V. I., Materials Science Forum 155–156, 31 (1994).CrossRefGoogle Scholar
6Deal, B. E. and Grove, A. S., J. Appl. Phys. 23, 3770 (1965).CrossRefGoogle Scholar
7Millares, M., Pierragi, B., and Lelievre, E., Scripta Metall. 27, 1777 (1992).CrossRefGoogle Scholar
8Nicolet, M-A. and Lau, S. S., in V.L.S.I. Electronics: Microstructure Science (Academic Press, New York, (1983), p. 326.Google Scholar
9d'Heurle, F.M., in VLSI Science and Technology edited by Dell'Oca, C. and Bullis, W. M. (The Electrochemical Society, Pennington, NJ, 1982), p. 194.Google Scholar
10d'Heurle, F.M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
11Gas, P. and d'Heurle, F.M., Appl. Surf. Sci. 73, 153 (1993).CrossRefGoogle Scholar
12Philibert, J., “Diffusion et transport dans les solides,” Editions de Physique, Les Ulis (1985).Google Scholar
13Finstad, T., Thin Solid Films 51, 411 (1978).CrossRefGoogle Scholar
14Ciccariello, J. C., Poize, S., and Gas, P., J. Appl. Phys. 67, 3315 (1990).CrossRefGoogle Scholar
15Jan, C. H., Chen, C. P., and Chang, Y. A., J. Appl. Phys. 73, 1168 (1993).CrossRefGoogle Scholar
16Ishida, K., Nisihizawa, T., and Schlenger, M. E., J. Phase Equilibria 12–5, 578 (1991).CrossRefGoogle Scholar
17Neijmeijer, W. L. and Kolster, B. H., Z. Metallk. 81, 314 (1990).Google Scholar
18d'Heurle, F.M., Gas, P., and Philibert, J., in Polycrystalline Thin Films—Structure, Texture, Properties, and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 181.Google Scholar
19Zhang, S-L., d'Heurle, F. M., and Gas, P., Appl. Surf. Sci. 53, 103 (1991).CrossRefGoogle Scholar
20Tu, K. N., Ottaviani, G., Thompson, R. D., and Mayer, J. W., J. Appl. Phys. 53, 4406 (1982).CrossRefGoogle Scholar
21Lau, S. S., Mayer, J. W., and Tu, K. N., J. Appl. Phys. 49, 4005 (1978).CrossRefGoogle Scholar
22Lien, C-D., Nicolet, M-A., Pai, C. S., and Lau, S. S., Appl. Phys A 36, 153 (1985).CrossRefGoogle Scholar
23d'Heurle, F. M., J. Vac. Sci. Technol. A 7, 1467 (1989).CrossRefGoogle Scholar
24Lien, C-D., Nicolet, M-A., and Lau, S. S., Appl. Phys. A 34, 249 (1984).CrossRefGoogle Scholar
25van Gurp, G. J., van der Weg, W. J., and Sigurd, D., J. Appl. Phys. 49, 4011 (1978).CrossRefGoogle Scholar
26Kaur, I. and Gust, W., Fundamentals of Grain and Interphase Boundary Diffusion (Ziegler Press, Stuttgart, 1988).Google Scholar
27d'Heurle, F. M., Gas, P., and Philibert, J., Solid State Phenomena (1995).Google Scholar
28Chart, T. G., “A critical assessment of thermodynamical data for transition metal-silicon systems”, NPL Report Chem. 18 (1972).Google Scholar
29Barge, T., Poize, S., Bemardini, J., and Gas, P., Appl. Surf. Sci. 53, 180 (1991).CrossRefGoogle Scholar
30Barge, T., Thesis, Université Aix-Marseille III (1993).Google Scholar
31Thomas, O., Gas, P., Charai, A., D'Heurle, F.M., LeGoues, F. K., Michel, A., and Scilla, G., J. Appl. Phys. 64, 2973 (1988).CrossRefGoogle Scholar
32Wen, D. S., Smith, P. L., Osburn, C. M., and Rozgonyi, G. A., Appl. Phys. Lett. 51, 1182 (1987).CrossRefGoogle Scholar
33Stolwijk, N. A., Bracht, H., Hettwer, H-G., Lerch, W., Mehrer, H., Rucki, A., and J⃤ger, W., Materials Science Forum 155–156, 475 (1994).CrossRefGoogle Scholar
34van Gurp, G. J. and Langereis, C., J. Appl. Phys. 46, 4301 (1975).CrossRefGoogle Scholar