Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T19:50:05.217Z Has data issue: false hasContentIssue false

AlN ceramics processed by aqueous slip casting

Published online by Cambridge University Press:  03 March 2011

S.M. Olhero
Affiliation:
Department of Ceramics and Glass Engineering, Centro de Investigação em Materiais Cerâmicos e Compósitos, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
P. Miranzo
Affiliation:
Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Cientificas CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
J.M.F. Ferreira*
Affiliation:
Department of Ceramics and Glass Engineering, Centro de Investigação em Materiais Cerâmicos e Compósitos, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fully dense aluminium nitride (AlN) ceramics consolidated by aqueous slip casting were obtained after sintering at 1750 °C for 2 h. The obtained samples were characterized by Vickers hardness (1000 Hv), flexural strength (200 MPa) and thermal conductivity (115 W/mK). YF3 and CaF2 were used as sintering additives in total amounts ranging from 5 to 7 wt% in YF3/CaF2 weight ratios of 1.25, 1.5, and 2. The compatibility between the thermochemically treated AlN powder and the sintering additives in the aqueous suspensions was investigated by rheological and zeta potential measurements. Highly concentrated (50 vol%) and well-dispersed suspensions could be prepared and used to consolidate homogeneous green bodies by slip casting. The phosphate species used to protect the surface AlN particles against hydrolysis could no longer be detected at temperatures higher than 1400 °C. X-ray diffraction results revealed that all the new crystalline phases formed upon sintering belong to the system Al–Y–O–Ca, but their specific compositions as well as the thermal properties of the sintered materials were shown to depend on the total amount and ratio of sintering aids.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sheppard, L.M.: Aluminium nitride: A versatile but challenging material. Am. Ceram. Soc. Bull. 69, 1801 (1990).Google Scholar
2.Knudsen, A.K.: Aluminum nitride. Am. Ceram. Soc. Bull. 74, 97 (1995).Google Scholar
3.Virkar, A.V., Jackson, T.B., Cutler, R.A.: Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminium nitride. J. Am. Ceram. Soc. 72, 2031 (1989).CrossRefGoogle Scholar
4.Collange, A., Grosseau, P., Guilhot, B., Disson, J.P., Joubert, P.: Thermal conductivity of compacted AlN samples. J. Eur. Ceram. Soc. 17, 1897 (1997).CrossRefGoogle Scholar
5.Greil, P., Kulig, M., Hotza, D.: Aluminium nitride ceramics with high thermal conductivity from gas-phase synthesized powders. J. Eur. Ceram. Soc. 13, 229 (1994).CrossRefGoogle Scholar
6.Ying-Da, Y., Hundere, A.M., Hoier, R., Dunin-Borkowski, R.E., Einarsrud, M-A.: Microstructural characterization and microstructural effects on the thermal conductivity of AlN (Y2O3) ceramics. J. Eur. Ceram. Soc. 22, 247 (2002).Google Scholar
7.Buhr, H., Muller, G.: Microstructure and thermal conductivity of AlN (Y2O3) ceramics sintered in different atmospheres. J. Eur. Ceram. Soc. 12, 271 (1993).CrossRefGoogle Scholar
8.Neumann, U., Reetz, T.: The influence of the anions of calcium-containing sintering aids for aluminium nitride. J. Eur. Ceram. Soc. 12, 117 (1993).CrossRefGoogle Scholar
9.Watari, K., Hwang, J.H., Toriyama, M., Kanzaki, S.: Effective sintering aids for low-temperature sintering of AlN ceramics. J. Mater. Res. 14, 1409 (1999).CrossRefGoogle Scholar
10.Liu, Y., Zhou, H., Qiao, L., Wu, Y.: Low-temperature sintering of aluminium nitride with YF3–CaF2 binary additive. J. Mater. Sci. Lett. 18, 703 (1999).CrossRefGoogle Scholar
11.Hundere, A.M., Einarsrud, M-A.: Effects of reduction of the Al–Y–O containing secondary phases during sintering of AlN with YF3 additions. J. Eur. Ceram. Soc. 16, 899 (1996).CrossRefGoogle Scholar
12.Qiao, L., Zhou, H., Fu, R.: Thermal conductivity of AlN ceramics sintered with CaF2 and YF3. Ceram. Int. 29, 893 (2003).CrossRefGoogle Scholar
13.Lange, F.F.: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
14.Lee, W.E., Rainforth, W.M.: Ceramic Microstructure-Property Control by Processing (Chapman and Hall, London, UK, 1994).Google Scholar
15.Wolfgang, M.S., Nelson, S.B., Bergstrom, L.: Novel powder-processing methods for advanced ceramics. J. Am. Ceram. Soc. 83, 1557 (2000).Google Scholar
16.Lange, F.F., Miller, K.T.: A colloidal method to ensure phase homogeneity in β″–Al2O3/ZrO2 composite systems. J. Am. Ceram. Soc. 70, 896 (1987).CrossRefGoogle Scholar
17.Lewis, J.: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341 (2000).CrossRefGoogle Scholar
18.Rak, Z.S.: Advanced shaping techniques in advanced ceramics. Ceram. Forum Int. 77 66 (2000).Google Scholar
19.Tarì, G., Ferreira, J.M.F., Lyckefeldt, O.: Influence of magnesia on colloidal processing of alumina. J. Eur. Ceram. Soc. 17, 1341 (1997).CrossRefGoogle Scholar
20.Tarì, G., Ferreira, J.M.F.: Colloidal processing of calcium carbonate. Ceram. Int. 24, 527 (1998).CrossRefGoogle Scholar
21.Olhero, S.M., Novak, S., Krnel, K., Kosmac, T., Ferreira, J.M.F.: Thermo-chemical surface treatment of AlN powder towards aqueous processing of AlN ceramics. J. Mater. Res. 19, 746 (2004).CrossRefGoogle Scholar
22.Oliveira, M., Olhero, S., Rocha, J., Ferreira, J.M.F.: Controlling hydrolysis and dispersing AlN powders in aqueous media. J. Colloid Interface Sci. 261, 456 (2003).CrossRefGoogle ScholarPubMed
23.Olhero, S.M., Oliveira, M.I.L.L., Ferreira, J.M.F.: Successful strategies for aqueous colloidal shape-forming of nitride-based ceramics. Recent Devel. Coll. Inter. Res. 2, 65 (2004).Google Scholar
24.Krnel, K., Kosmac, T.: Reactivity of aluminium nitride powder in dilute inorganic acids. J. Am. Ceram. Soc. 83, 1375 (2000).CrossRefGoogle Scholar
25.Krnel, K., Kosmac, T.: Protection of AlN powder against hydrolysis using aluminium dihydrogen phosphate. J. Eur. Ceram. Soc. 21, 2075 (2001).CrossRefGoogle Scholar
26.Shimizu, Y., Hatano, J., Hyodo, T., Egashira, M.: Ion-exchange loading of yttrium acetate as a sintering aid on aluminium nitride powder via aqueous processing. J. Am. Ceram. Soc. 83, 2793 (2000).CrossRefGoogle Scholar
27.Luo, X-J., Xu, X-R., Zhang, B-L., Li, W-L., Zhuang, H-R.: Characteristic and dispersion of a treated AlN powder in aqueous solvent. Mater. Sci. Eng., A 368, 126 (2004).CrossRefGoogle Scholar
28.Jarrige, J., Bouzouita, K., Doradoux, C., Billy, M.: A new method for fabrication of dense aluminium nitride bodies at temperatures as low as 1600 °C. J. Eur. Ceram. Soc. 12, 279 (1993).CrossRefGoogle Scholar
29.Watari, K., Hwang, H.J., Toriyama, M., Kanzaki, S.: Effective sintering aids for low-temperature sintering of AlN ceramics. J. Mater. Res. 14, 1409 (1999).CrossRefGoogle Scholar
30.Troczynski, T.B., Nicholson, P.S.: Effect of additives on the pressureless sintering of aluminium nitride between 1500 and 1800 °C. J. Am. Ceram. Soc. 72, 1488 (1989).CrossRefGoogle Scholar
31.Streicher, E., Chartier, T., Boch, P., Denanot, M-F., Rabier, J.: Densification and thermal conductivity of low-sintering-temperature AlN materials. J. Eur. Ceram. Soc. 6, 23 (1990).CrossRefGoogle Scholar
32.Qiao, L., Zhou, H., Xue, H., Wang, S.: Effect of Y2O3 on low temperature sintering and thermal conductivity of AlN ceramics. J. Eur. Ceram. Soc. 23, 61 (2003).CrossRefGoogle Scholar
33.Klemens, P.G.: Thermal conductivity of inhomogeneous media. High Temp. High Press 23, 241248(1991).Google Scholar
34.Roth, R.S., Negas, T., Lawrence, P.C. In Phase Diagrams for Ceramists, Vol. 5, edited by Smith, G. (American Ceramic Society, Columbus, OH, 1983), p. 97.Google Scholar
35.Hundere, A.M., Einarsurd, M-A.: Microstructural development in AlN (YF3) ceramics. J. Eur. Ceram. Soc. 17, 873 (1997).CrossRefGoogle Scholar
36.Gorzawski, G., Sternitzke, M., Muller, W.F., Berger, A., Muller, G.: Oxygen enrichment at inversion domain boundaries in aluminium nitride—Influence on thermal conductivity. J. Eur. Ceram. Soc. 15, 95 (1995).CrossRefGoogle Scholar