Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T02:39:17.340Z Has data issue: false hasContentIssue false

Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells

Published online by Cambridge University Press:  26 December 2017

Dalia Chávez-García*
Affiliation:
Centro de Enseñanza Técnica y Superior, Campus Ensenada, Ensenada, Baja California C.P. 22860, México
Karla Juárez-Moreno
Affiliation:
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California C.P. 22860, México; and CONACYT Research Fellow at Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California C.P. 22860, Mexico
Cristian H. Campos
Affiliation:
Facultad de Ciencias Químicas, Universidad de Concepción, Concepción C.P. 4070386, Chile
Joel B. Alderete
Affiliation:
Facultad de Ciencias Químicas, Universidad de Concepción, Concepción C.P. 4070386, Chile
Gustavo A. Hirata
Affiliation:
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California C.P. 22860, México
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Luminescent biolabels are being eagerly investigated as a means of detecting cancer cells by bioimaging. Upconversion nanoparticles are a promising option to be used as biolabels for cancer cell detection. This process uses a near infrared beam (NIR λ = 980 nm) as the excitation source to upconvert the energy into light in the visible region. The present study, used Y2O3:Yb3+, Er3+ (1%, 10% mol) and Gd2O3:Yb3+, Er3+ (1%, 10% mol) capable of emitting red photons of λ = 660 nm. The nanoparticles were previously functionalized with aminosilanes and folic acid (UCNP-NH2-FA). Folic acid binds to the folate receptor on the surface of MCF-7 breast cancer cells, and this binding promotes internalization of the UCNPs via endocytosis. The UCNPs were characterized by TEM, EDS, and Fourier transform infrared. Cytotoxicity was also analyzed using the MTT (methy-134 thiazolyltetrazolium) colorimetric assay. The UCNPs-NH2-FA was noncytotoxic to the studied cancer cells and they were clearly localizable within the cell cytoplasm via confocal microscope.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Lakshmi Nair

References

REFERENCES

Blasse, G. and Grabmaier, B.: Luminescent Materials, Telos (Springer-Verlag, Berlin, 1994).Google Scholar
Da Costa, M., Doughan, S., Han, Y., and Krull, U.: Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 832, 1 (2014).CrossRefGoogle Scholar
Chávez, D., Contreras, O., and Hirata, G.: Synthesis and upconversion luminescence of nanoparticles Y2O3 and Gd2O3 co-doped with Yb3+ and Er3+ . Nanomater. Nanotechnol. 6, 7 (2016).Google Scholar
Zhang, F.: Photon Upconversion Nanomaterials, Nanostructure Science and Technology (Springer-Verlag, Berlin Heidelberg, 2015).CrossRefGoogle Scholar
Kong, W., Shan, J., and Ju, Y.: Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors. Mater. Lett. 64, 668 (2010).CrossRefGoogle Scholar
Chávez, D., Juárez-Moreno, K., and Hirata, G.: Aminosilane functionalization and cytotoxicity effects of upconversion nanoparticles Y2O3 and Gd2O3 co-doped with Yb3+ and Er3+ . Nano Biomed. 3, 1 (2016).Google Scholar
Lu, Y., Sega, E., Leamon, C-P., and Low, P-S.: Folate receptor-targeted immunotherapy of cancer: Mechanism and therapeutic potential. Adv. Drug Delivery Rev. 56, 1161 (2000).Google Scholar
Soule, H-D., Vazquez, J., Long, A., Albert, S., and Brennan, M.: A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51, 1409 (1973).CrossRefGoogle ScholarPubMed
Hemmer, E., Yamano, T., Kishimoto, H., Venkatachalam, N., Hyodoand, H., and Soga, K.: Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater. 9, 4734 (2012).Google Scholar
Sudimack, J. and Lee, R-J.: Targeted drug delivery via the folate receptor. Adv. Drug Delivery Rev. 41, 147 (2000).CrossRefGoogle ScholarPubMed
Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
Sounderya, N. and Zhang, Y.: Upconversion nanoparticles for imaging cells. Proceedings 23, 741 (2009).Google Scholar
Martínez-Carpio, P-A.: Constitutive and regulated secretion of epidermal growth factor and transforming growth factor-beta1 in MDA-MB-231 breast cancer cell line in 11-day cultures. Cell. Signalling 11, 753 (1999).Google Scholar
Sanchez-Sanchez, L., Tapia-Moreno, A., Juarez-Moreno, K., Patterson, D., Cadena-Nava, R., Douglas, T., and Vazquez-Duhalt, R.: Design of a VLP nanovehicle for CYP450 enzymatic activity delivery. J. Nanobiotechnol. 13, 66 (2015).Google Scholar
Chatterjee, D-K., Rufaihah, A-J., and Zhang, Y.: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937 (2007).Google Scholar
Lippman, M-E. and Bolan, G.: Oestrogen-responsive human breast cancer in long-term tissue culture. Nature 256, 592 (1975).Google Scholar
Horwitz, K-B., Costlow, M-E., and McGuire, W-L.: MCF-7: A human breast cancer cell line with estrogen, androgen, progesterone and glucocorticoid receptors. Steroids 26, 785 (1975).Google Scholar
Vetrone, F., Boyer, J-C., and Capobianco, J-A.: Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+ . J. Phys. Chem. 107, 1107 (2003).CrossRefGoogle Scholar
Hirai, T. and Orikoshi, T.: Preparation of Gd2O3:Yb, Er and Gd2O2S:Yb, Er infrared to visible conversion phosphor ultradine particles using an emulsion liquid membrane system. J. Colloid Interface Sci. 269, 103 (2004).CrossRefGoogle Scholar