Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T08:16:51.911Z Has data issue: false hasContentIssue false

Tracking subsurface ion radiation damage with metal–oxide–semiconductor device encapsulation

Published online by Cambridge University Press:  05 January 2015

Dhruva D. Kulkarni*
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
Radhey E. Shyam
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
Daniel B. Cutshall
Affiliation:
Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, USA
Daniel A. Field
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
James E. Harriss
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
William R. Harrell
Affiliation:
Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, USA
Chad E. Sosolik*
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We describe measurements aimed at tracking the subsurface energy deposition of ionic radiation by encapsulating an irradiated oxide target within multiple, spatially separated metal–oxide–semiconductor (MOS) capacitors. In particular, we look at incident kinetic energy and potential energy effects in the low keV regime for alkali ions (Na+) and multicharged ions (MCIs) of ArQ+ (Q = 1, 4, 8, and 11) incident on the as-grown layers of SiO2 on Si. With the irradiated oxide encapsulated under Al top contacts, we record an electronic signature of the incident ionic radiation through capacitance–voltage (CV) measurements. Both kinetic and potential energy depositions give rise to shifted CV signatures that can be directly related to internal electron–hole pair excitations. The MCI data reveal an apparent power law dependence on charge state, which is at odds with some prior thin foil studies obtained at higher incident energies.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Khalid Hattar

References

REFERENCES

El-Guebaly, L.A.: History and evolution of fusion power plant studies: Past, present, and future prospects. In Nuclear Reactors, Nuclear Fusion and Fusion Engineering, Aasen, A. and Olsson, P. eds.; Nova Science Publishers, Hauppauge, NY, 2009; p. 217.Google Scholar
Federici, G., Skinner, C.H., Brooks, J.N., Coad, J.P., Grisolia, C., Haasz, A.A., Hassanein, A., Philipps, V., Pitcher, C.S., Roth, J., Wampler, W.R., and Whyte, D.G.: Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion 41(12R), 19672137 (2001).Google Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268(11–12), 18181823 (2010).Google Scholar
Savage, B.D., Sembach, K.R., Jenkins, E.B., Shull, J.M., York, D.G., Sonneborn, G., Moos, H.W., Friedman, S.D., Green, J.C., Oegerle, W.R., Blair, W.P., Kruk, J.W., and Murphy, E.M.: Far Ultraviolet Spectroscopic Explorer Observations of O VI Absorption in the Galactic Halo. Astrophys. J., Lett. 538(1), L27 (2000).Google Scholar
Blair, W.P., Sankrit, R., Shelton, R., Sembach, K.R., Moos, H.W., Raymond, J.C., York, D.G., Feldman, P.D., Chayer, P., Murphy, E.M., Sahnow, D.J., and Wilkinson, E.: Far Ultraviolet Spectroscopic Explorer Observations of the Supernova Remnant N49 in the Large Magellanic Cloud. Astrophys. J., Lett. 538(1), L61 (2000).Google Scholar
Ayres, T.R., Brown, A., Osten, R.A., Huenemoerder, D.P., Drake, J.J., Brickhouse, N.S., and Linsky, J.L.: Chandra, EUVE, HST, and VLA multiwavelength campaign on HR 1099: Instrumental capabilities, data reduction, and initial results. Astrophys. J. 549(1), 554 (2001).Google Scholar
Aumayr, F., Burgdorfer, J., Hayderer, G., Varga, P., and Winter, H.P.: Evidence against the “Coulomb explosion” model for desorption from insulator surfaces by slow highly charged ions. Phys. Scr. T80B (Topical Issue 1999), 240242 (1999).Google Scholar
Aumayr, F., Varga, P., and Winter, H.P.: Potential sputtering: desorption from insulator surfaces by impact of slow multicharged ions. Int. J. Mass Spectrom. 192(1), 415424 (1999).Google Scholar
Aumayr, F. and Winter, H.: Potential sputtering. Philos. Trans. R. Soc., A 362(1814), 77102 (2004).Google Scholar
Heller, R., Facsko, S., Wilhelm, R.A., and Moeller, W.: Defect mediated desorption of the KBr(001) surface induced by single highly charged ion impact. Phys. Rev. Lett. 101(9), 096102 (2008).Google Scholar
Kakutani, N., Azuma, T., Yamazaki, Y., Komaki, K., and Kuroki, K.: Potential sputtering of protons from a surface under slow highly-charged ion-bombardment. Jpn. J. Appl. Phys. 2 34(5A), L580L583 (1995).Google Scholar
Kuroki, K., Komaki, K., and Yamazaki, Y.: Potential sputtering of protons from hydrogen- and H2O-terminated Si(100) surfaces with slow highly charged ions. Nucl. Instrum. Methods Phys. Res., Sect. B 203, 183191 (2003).Google Scholar
Pomeroy, J.M. and Grube, H.: HCI potential energy sputtering measured with magnetic tunnel junctions. Nucl. Instrum. Methods Phys. Res., Sect. B 267(4), 642645 (2009).Google Scholar
Schenkel, T., Schneider, M., Hattass, M., Newman, M.W., Barnes, A.V., Hamza, A.V., Schneider, D.H., Cicero, R.L., and Chidsey, C.E.D.: Electronic desorption of alkyl monolayers from silicon by very highly charged ions. J. Vac. Sci. Technol., B 16(6), 32983300 (1998).Google Scholar
Sporn, M., Libiseller, G., Neidhart, T., Schmid, M., Aumayr, F., Winter, H.P., Varga, P., Grether, M., Niemann, D., and Stolterfoht, N.: Potential sputtering of clean SiO2 by slow highly charged ions. Phys. Rev. Lett. 79(5), 945948 (1997).Google Scholar
Niehaus, A.: A classical-model for multiple-electron capture in slow collisions of highly charged ions with atoms. J. Phys. B: At. Mol. Phys. 19(18), 2925 (1986).Google Scholar
Janev, R.K. and Winter, H.: State-selective electron-capture in atom highly charged ion collisions. Phys. Rep. 117(5–6), 265387 (1985).Google Scholar
Kimura, M., Nakamura, N., Watanabe, H., Yamada, I., Danjo, A., Hosaka, K., Matsumoto, A., Ohtani, S., Sakaue, H.A., Sakurai, M., Tawara, H., and Yoshino, M.: A scaling law of cross-sections for multiple electron-transfer in slow collisions between highly-charged ions and atoms. J. Phys. B: At., Mol. Opt. Phys. 28(20), L643L647 (1995).Google Scholar
Barat, M. and Roncin, P.: Multiple electron-capture by highly charged ions at keV energies. J. Phys. B: At., Mol. Opt. Phys. 25(10), 22052243 (1992).Google Scholar
Vancura, J., Marchetti, V.J., Perotti, J.J., and Kostroun, V.O.: Absolute total and one-electron and 2-electron transfer cross-sections for Ar(q+) (8 ≤ q ≤ 16) on He and H2 at 2.3q keV. Phys. Rev. A 47(5), 37583768 (1993).Google Scholar
Biersack, J.P.: The effect of high charge states on the stopping and ranges of ions in solids. Nucl. Instrum. Methods Phys. Res., Sect. B 8081(1), 12 (1993).Google Scholar
Schenkel, T., Briere, M.A., Barnes, A.V., Hamza, A.V., Bethge, K., Schmidt-Böcking, H., and Schneider, D.H.: Charge state dependent energy loss of slow heavy ions in solids. Phys. Rev. Lett. 79(11), 2030 (1997).Google Scholar
Schenkel, T., Hamza, A.V., Barnes, A.V., and Schneide, D.H.: Energy loss of slow, highly charged ions in solids. Phys. Rev. A 56(3), R1701 (1997).Google Scholar
Ray, M., Lake, R., Moody, S., Magadala, V., and Sosolik, C.E.: A hyperthermal energy ion beamline for probing hot electron chemistry at surfaces. Rev. Sci. Instrum. 79(7), 076106 (2008).Google Scholar
Shyam, R., Kulkarni, D.D., Field, D.A., Srinadhu, E.S., Cutshall, D.B., Harrell, W.R., Harriss, J.E., and Sosolik, C.E.: First multicharged ion irradiation results from the CUEBIT facility at Clemson University. AIP Conf. Proc. In press.Google Scholar
Shyam, R.: Ph.D. Thesis, Clemson University, 2014.Google Scholar
Nicollian, E.H. and Brews, J.R.: MOS (Metal Oxide Semiconductor) Physics and Technology (A Wiley-Interscience Publication, USA, 1982).Google Scholar
Ausman, G.A. Jr. and Mclean, F.B.: Electron-hole pair creation energy in SiO2 . Appl. Phys. Lett. 26(4), 173 (1975).Google Scholar
Oldham, T.R. and Mclean, F.B.: Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 50(3), 483 (2003).Google Scholar
Oldham, T.R. and McGarrity, J.M.: Ionization of SiO2 by heavy charged particles. IEEE Trans. Nucl. Sci. NS-28(6), 3975 (1981).Google Scholar
Oldham, T.R.: Recombination along the tracks of heavy charged particles in SiO2 films. J. Appl. Phys. 57(8), 2695 (1985).Google Scholar
Fleetwood, D.M., Reber, R.A. Jr., Riewe, L.C., and Winokur, P.S.: Thermally stimulated current in SiO2 . Microelectron. Reliab. 39(9), 1323 (1999).Google Scholar
Schenkel, T., Lo, C.C., Weis, C.D., Schuh, A., Persaud, A., and Bokor, J.: Critical issues in the formation of quantum computer test structures by ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 267(16), 2563 (2009).Google Scholar
Herrmann, R., Cocke, C.L., Ullrich, J., Hagmann, S., Stoeckli, M., and Schmidt-Boecking, H.: Charge-state equilibration length of a highly charged ion inside a carbon solid. Phys. Rev. A 50(2), 1435 (1994).Google Scholar
Brandt, W. and Kitagawa, M.: Effective stopping-power charges of swift ions in condensed matter. Phys. Rev. B 25(9), 5631 (1982).Google Scholar