Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T11:13:17.208Z Has data issue: false hasContentIssue false

Time-of-flight study of electrical charge mobilities in liquid-crystalline zinc octakis(β-octoxyethyl) porphyrin films

Published online by Cambridge University Press:  31 January 2011

Yang Yuan
Affiliation:
Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve W., Montreal, Quebec, Canada H3G 1M8
Brian A. Gregg
Affiliation:
National Renewable Energy Laboratory, Basic Sciences Division, 1617 Cole Boulevard, Colden, Colorado 80401-3393
Marcus F. Lawrence*
Affiliation:
Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve W., Montreal, Quebec, Canada H3G 1M8
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Time-of-flight measurements performed on micron-thick films of liquid-crystalline zinc octakis(β-octoxyethyl) porphyrin indicated that charge carriers possess significantly high drift mobilities, attaining approximately 0.01 cm2 V−1s −1 and 0.008 cm2 V−1s −1 for holes and electrons, respectively, at room temperature. Upon heating the samples from 300 to 420 K, causing the porphyrin to go from the solid-crystalline to the discotic mesophase, the mobilities did not decrease drastically, and remained at values slightly larger than half those observed at room temperature. Charge transport in this material conformed to the Scher–Montroll model, which attributes a distribution of hopping times to the propagation of the initially formed charged carrier packet. Analysis of the “universal” plots prescribed by this model yielded a dispersion factor of 0.5 for both charge carriers.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Simon, J. and André, J-J., Molecular Semiconductors (Springer Verlag, Berlin, Germany, 1985).CrossRefGoogle Scholar
2.Tang, C.W., Appl. Phys. Lett. 48, 183 (1986).CrossRefGoogle Scholar
3.Guay, D., Coté, R., Marques, R., Dodelet, J.P., Lawrence, M.F., Gravel, D., and Langford, C.H., J. Electrochem. Soc. 134, 2942 (1987).CrossRefGoogle Scholar
4.Klofta, T.J., Danzinger, J., Lee, P., Pankow, J., Nebesny, K.W., and Armstrong, N.R., J. Phys. Chem. 91, 5646 (1987).CrossRefGoogle Scholar
5.Klofta, T.J., Sims, T.D., Pankow, J.W., Danzinger, J., Nebesny, K.W., and Armstrong, N.R., J. Phys. Chem. 91, 5651 (1987).CrossRefGoogle Scholar
6.Sims, T.D., Pemberton, J.E., Lee, P., and Armstrong, N.R., Chem. Mater. 1, 26 (1989).CrossRefGoogle Scholar
7.Gastonguay, L., Dodelet, J.P., Coté, R., Lawrence, M.F., and Gravel, D., Can. J. Chem. 68, 202 (1991).CrossRefGoogle Scholar
8.Lawrence, M.F., Huang, Z., Langford, C.H., and Ordonez, I., J. Phys. Chem. 97, 944 (1993).CrossRefGoogle Scholar
9.Huang, Z., Ioannidis, A., and Lawrence, M.F., J. Phys. Chem. 97, 952 (1993).CrossRefGoogle Scholar
10.Law, K-Y., Chem. Rev. 93, 449 (1993).CrossRefGoogle Scholar
11.Chau, L.K., Arbour, C., Collins, G.E., Nebesny, K.W., Lee, P.A., England, C.D., Armstrong, N.R., and Parkinson, B.A., J. Phys. Chem. 97, 2690 (1993).CrossRefGoogle Scholar
12.Ioannidis, A., Lawrence, M.F., Kassi, H., Coté, R., Dodelet, J.P., and Leblanc, R.M., Chem. Phys. Lett. 205, 46 (1993).CrossRefGoogle Scholar
13.Ioannidis, A., Lawrence, M.F., Coté, R., Kassi, H., and Dodelet, J.P., Mol. Cryst. Liq. Cryst. 252, 195 (1994).CrossRefGoogle Scholar
14.Schmidt, A., Schlaf, R., Louder, R., Chau, L-K., Chen, S-Y., Fritz, T., Lawrence, M.F., Parkinson, B.A., and Armstrong, N.R., Chem. Mater. 7, 2127 (1995).CrossRefGoogle Scholar
15.Piet, J.J., Warman, J.M., and Anderson, H.L., Chem. Phys. Lett. 266, 70 (1997).CrossRefGoogle Scholar
16.Jensen, K.K., van Berlekom, S.B., Kajanus, J., Martensson, J., and Albinsson, B., J. Phys. Chem. A 101, 2218 (1997).CrossRefGoogle Scholar
17.Ioannidis, A. and Dodelet, J.P., J. Phys. Chem. 101, 891 (1997).CrossRefGoogle Scholar
18.Ioannidis, A. and Dodelet, J.P., J. Phys. Chem. 101, 901 (1997).CrossRefGoogle Scholar
19.Ioannidis, A. and Dodelet, J.P., J. Phys. Chem. 101, 5100 (1997).CrossRefGoogle Scholar
20.Gregg, B.A., Fox, M.A., and Bard, A.J., J. Am. Chem. Soc. 111, 3024 (1989).CrossRefGoogle Scholar
21.Gregg, B.A., Fox, M.A., and Bard, A.J., J. Phys. Chem. 93, 4227 (1989).CrossRefGoogle Scholar
22.Gregg, B.A., Fox, M.A., and Bard, A.J., J. Phys. Chem. 94, 1586 (1990).CrossRefGoogle Scholar
23.Schouten, P.G., Warman, J.M., de Haas, M.P., Fox, M.A., and Pan, H-L., Nature 253, 736 (1991).CrossRefGoogle Scholar
24.Gregg, B.A. and Kim, Y.I., J. Phys. Chem. 98, 2412 (1994).CrossRefGoogle Scholar
25.Schouten, P.G., Warman, J.M., de Haas, M.P., van Nostrum, C.F., Gelinck, G.H., Nolte, R.J.M, Copyn, M.J., Zwikker, J.W., Engel, M.K., Hanack, M., Chang, Y.H., and Ford, W.T., J. Am. Chem. Soc. 116, 6880 (1994).CrossRefGoogle Scholar
26.van de Graats, A.M., Warman, J.M., Müller, K., Geerts, Y., and Brand, J.D., Adv. Mater. 10, 36 (1998).Google Scholar
27.Spear, W.E., J. Non-Cryst. Solids 1, 197 (1969).CrossRefGoogle Scholar
28.Hughes, R.C., in Photoconductivity in Polymers: An Interdisciplinary Approach, edited by Patsis, A.V. and Seanor, D.A. (Technomic, Westport, CT, 1976), p. 158.Google Scholar
29.Scher, H. and Montroll, E.W., Phys. Rev. B 12, 2455 (1975).CrossRefGoogle Scholar
30.Scott, J.C., Pautmeier, L.T., and Schein, L.B., Phys. Rev. B 46, 8603 (1992).CrossRefGoogle Scholar
31.Borsenberger, P.M., Magin, E.H., van der Auweraer, M., and deSchryver, F.C., Phys. Status Solidi A 140, 9 (1993).CrossRefGoogle Scholar
32.Bässler, H., Phys. Status Solidi B 175, 16 (1993).CrossRefGoogle Scholar
33.Bässler, H., Mol. Cryst. Liq. Cryst. 252, 11 (1994).CrossRefGoogle Scholar
34.Redecker, M., Bradley, D.D.C, Inbasekaran, M., Wu, W.W., and Woo, E.P., Adv. Mater. 11, 241 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
35.Scharfe, M.E., Phys. Rev. B 2, 5025 (1970).CrossRefGoogle Scholar
36.Pai, D.M. and Scharfe, M.E., J. Non-Cryst. Solids 8, 752 (1972).CrossRefGoogle Scholar
37.Scharfe, M.E., Bull. Am. Phys. Soc. 18, 454 (1973).Google Scholar
38.Scher, H. and Montroll, E.W., Phys. Rev. B 1, 4491 (1973).CrossRefGoogle Scholar
39.Mort, J. and Lakatos, A.I., J. Non-Cryst. Solids 4, 117 (1970).CrossRefGoogle Scholar
40.Scher, H., in Amorphous and Liquid Simiconductors, edited by Stuke, J. and Brenig, W. (Taylor and Francis, London, United Kingdom, 1974), p. 135.Google Scholar
41.Pfister, G., Phys. Rev. Lett. 33, 1474 (1974).CrossRefGoogle Scholar