Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T18:00:20.142Z Has data issue: false hasContentIssue false

Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films

Published online by Cambridge University Press:  31 May 2013

Daniel Bufford
Affiliation:
Department of Mechanical Engineering, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3123
Haiyan Wang
Affiliation:
Department of Electrical Engineering, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3128
Xinghang Zhang*
Affiliation:
Department of Mechanical Engineering, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3123
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Sputter-deposited epitaxial (111) and (110) Ag films have high-density nanotwins with respective twin boundary orientations perpendicular and angled to the growth direction. Twin density in as-deposited (111) Ag films is much greater than in (110) films, leading to higher hardness in the (111) films. Annealing up to 800 °C (homologous temperature of 0.85 Tm) leads to increased twin thickness, although the average twin thickness remains <100 nm in both systems. Twinned volume fraction falls dramatically in annealed (110) films but remains constant at ∼50% in (111) films. The mechanisms leading to the elimination of nanotwins in (110) films and their remarkable stability in (111) films at elevated temperatures are discussed. Coarsening and elimination of twins result in hardness reduction after annealing. The variety of microstructures achieved via annealing allows for the introduction of a strengthening model considering both twin and grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, L., Shen, Y.F., Dao, M., and Suresh, S.: Strain rate sensitivity of Cu with nanoscale twins. Scr. Mater. 55(4), 319 (2006).Google Scholar
Suresh, S., Dao, M., Lu, L., and Shen, Y.F.: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54(20), 5421 (2006).Google Scholar
Suresh, S., Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., and Lu, K.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53(7), 2169 (2005).Google Scholar
Weertman, J.R., Shute, C.J., Myers, B.D., Xie, S., Barbee, T.W., and Hodge, A.M.: Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning. Scr. Mater. 60(12), 1073 (2009).Google Scholar
Weertman, J.R., Shute, C.J., Myers, B.D., Xie, S., Li, S.Y., Barbee, T.W., and Hodge, A.M.: Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Acta Mater. 59(11), 4569 (2011).Google Scholar
Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M.F., and Zhang, X.: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93(8), 083108083108-3 (2008).CrossRefGoogle Scholar
Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323(5914), 607 (2009).CrossRefGoogle ScholarPubMed
Anderoglu, O., Misra, A., Ronning, F., Wang, H., and Zhang, X.: Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. J. Appl. Phys. 106(2), 024313024313-9 (2009).CrossRefGoogle Scholar
Zhang, X., Misra, A., Wang, H., Swadener, J.G., Lima, A.L., Hundley, M.F., and Hoagland, R.G.: Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins. Appl. Phys. Lett. 87(23), 233116233116-3 (2005).CrossRefGoogle Scholar
Lu, K., Lu, L., and Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925), 349 (2009).CrossRefGoogle ScholarPubMed
Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422 (2004).CrossRefGoogle ScholarPubMed
Bufford, D., Zhang, X., and Wang, H.: High strength, epitaxial nanotwinned Ag films. Acta Mater. 59(1), 93 (2011).CrossRefGoogle Scholar
Zhang, X., Misra, A., Wang, H., Nastasi, M., Embury, J.D., Mitchell, T.E., Hoagland, R.G., and Hirth, J.P.: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84(7), 1096 (2004).CrossRefGoogle Scholar
Zhang, X., Misra, A., Wang, H., Shen, T.D., Nastasi, M., Mitchell, T.E., Hirth, J.P., Hoagland, R.G., and Embury, J.D.: Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 52(4), 995 (2004).CrossRefGoogle Scholar
Gu, P., Dao, M., Asaro, R.J., and Suresh, S.: A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals. Acta Mater. 59(18), 6861 (2011).CrossRefGoogle Scholar
Koch, C.C., Morris, D.G., Lu, K., and Inoue, A.: Ductility of nanostructured materials. MRS Bull. 24(2), 54 (1999).CrossRefGoogle Scholar
Anderoglu, O., Misra, A., Wang, J., Hoagland, R.G., Hirth, J.P., and Zhang, X.: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26(6), 875 (2010).CrossRefGoogle Scholar
Li, N., Wang, J., Huang, J.Y., Misra, A., and Zhang, X.: Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. Scr. Mater. 64(2), 149 (2011).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., Zhang, X., Huang, J.Y., and Hirth, J.P.: Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 59(15), 5989 (2011).CrossRefGoogle Scholar
Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).CrossRefGoogle ScholarPubMed
Murr, L.E.: Interfacial Phenomena in Metals and Alloys (Addison-Wesley Pub. Co., Adv. Book Program, London, 1975).Google Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations (Wiley, New York, 1982).Google Scholar
Anderoglu, O., Misra, A., Wang, H., and Zhang, X.: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103(9), 094322094322-6 (2008).CrossRefGoogle Scholar
Zhang, X. and Misra, A.: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr. Mater. 66(11), 860 (2012).CrossRefGoogle Scholar
Wang, J., Anderoglu, O., Hirth, J.P., Misra, A., and Zhang, X.: Dislocation structures of Sigma 3 {112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95(2), 021908021908-3 (2009).CrossRefGoogle Scholar
Medlin, D.L., Campbell, G.H., and Carter, C.B.: Stacking defects in the 9R phase at an incoherent twin boundary in copper. Acta Mater. 46(14), 5135 (1998).CrossRefGoogle Scholar
Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J.Y., and Hirth, J.P.: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58(6), 2262 (2010).CrossRefGoogle Scholar
Liu, L., Wang, J., Gong, S.K., and Mao, S.X.: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106(17), 175504 (2011).CrossRefGoogle ScholarPubMed
Li, N., Wang, J., Zhang, X., and Misra, A.: In-situ TEM study of dislocation-twin boundaries interaction in nanotwinned Cu films. JOM 63(9), 62 (2011).Google Scholar
Xu, L., Xu, D., Tu, K.N., Cai, Y., Wang, N., Dixit, P., Pang, J.H.L., and Miao, J.M.: Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. J. Appl. Phys. 104(11), 113717113717-5 (2008).CrossRefGoogle Scholar
Carter, C.B., Medlin, D.L., Angelo, J.E., and Mills, M.J.: The 112 lateral twin boundary in FCC materials. Mater. Sci. Forum 207212 (1996).Google Scholar
Nason, T.C., Yang, G.R., Park, K.H., and Lu, T.M.: Study of silver diffusion into Si(111) and Sio2 at moderate temperatures. J. Appl. Phys. 70(3), 1392 (1991).CrossRefGoogle Scholar
Weber, L.: Equilibrium solid solubility of silicon in silver. Metall. Mater. Trans. A. 33(4), 1145 (2002).CrossRefGoogle Scholar
Chevalier, P.Y.: Thermodynamic evaluation of the Ag-Si system. Thermochim. Acta 130, 33 (1988).CrossRefGoogle Scholar
Rothman, S.J., Peterson, N.L., and Robinson, J.T.: Isotope effect for self-diffusion in single crystals of silver. Phys. Status Solidi. 39(2), 635 (1970).CrossRefGoogle Scholar
Bihr, J., Mehrer, H., and Maier, K.: Comparison between microsectioning studies of low-temperature self-diffusion in silver. Phys. Status Solidi A. 50(1), 171 (1978).CrossRefGoogle Scholar
Varotsos, P. and Alexopoulos, K.: Calculation of diffusion-coefficients at any temperature and pressure from a single measurement. 1. Self-diffusion. Phys. Rev. B. 22(6), 3130 (1980).CrossRefGoogle Scholar
Hull, D. and Bacon, D.J.: Introduction to Dislocations, 4th ed. (Butterworth Heinemann, Boston, 2001).Google Scholar
Clarebro, L.M., Segall, R.L., and Loretto, M.H.: Faulted defects in quenched copper and silver. Philos. Mag. 13(126), 1285 (1966).CrossRefGoogle Scholar
Pharr, G.M. and Oliver, W.C.: Nanoindentation of silver-relations between hardness and dislocation-structure. J. Mater. Res. 4(1), 94 (1989).CrossRefGoogle Scholar
Christopher, D., Smith, R., and Richter, A.: Atomistic modelling of nanoindentation in iron and silver. Nanotechnology 12(3), 372 (2001).CrossRefGoogle Scholar
Jang, D.C., Li, X.Y., Gao, H.J., and Greer, J.R.: Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7(9), 594 (2012).CrossRefGoogle ScholarPubMed
Singh, B.N., Foreman, A.J.E., and Trinkaus, H.: Radiation hardening revisited: Role of intracascade clustering. J. Nucl. Mater. 249(2–3), 103 (1997).CrossRefGoogle Scholar
Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum, New York, 1996), pp. 321322.CrossRefGoogle Scholar
Taylor, G.I.: The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. London, Ser. A. 145(855), 362 (1934).Google Scholar
Grossbeck, M.L., Maziasz, P.J., and Rowcliffe, A.F.: Modeling of strengthening mechanisms in irradiated fusion-reactor 1st wall alloys. J. Nucl. Mater. 191, 808 (1992).CrossRefGoogle Scholar
Mata, M., Anglada, M., and Alcala, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17(5), 964 (2002).CrossRefGoogle Scholar
Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, UK, 2000), pp. 105.CrossRefGoogle Scholar
Zhao, M.H., Slaughter, W.S., Li, M., and Mao, S.X.: Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 51(15), 4461 (2003).CrossRefGoogle Scholar
Panin, A.V., Shugurov, A.R., and Oskomov, K.V.: Mechanical properties of thin Ag films on a silicon substrate studied using the nanoindentation technique. Phys. Solid State 47(11), 2055 (2005).CrossRefGoogle Scholar
Cao, Y.F., Allameh, S., Nankivil, D., Sethiaraj, S., Otiti, T., and Soboyejo, W.: Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness. Mater. Sci. Eng., A 427(1–2), 232 (2006).CrossRefGoogle Scholar
Fu, Y.Q., Shearwood, C., Xu, B., Yu, L.G., and Khor, K.A.: Characterization of spark plasma sintered Ag nanopowders. Nanotechnology. 21(11), 115707 (2010).CrossRefGoogle ScholarPubMed
Asaro, R.J. and Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53(12), 3369 (2005).CrossRefGoogle Scholar
Gu, P., Kad, B.K., and Dao, M.: A modified model for deformation via partial dislocations and stacking faults at the nanoscale. Scr. Mater. 62(6), 361 (2010).CrossRefGoogle Scholar
McCall, J.L.: Practical applications of quantitative metallography: A symposium (American Society for Testing and Materials, Ann Arbor, MI, 1984).Google Scholar
Merz, M.D. and Dahlgren, S.D.: Tensile-strength and work-hardening of ultrafine-grained high-purity copper. J. Appl. Phys. 46(8), 3235 (1975).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005).CrossRefGoogle Scholar
Zhang, X., Misra, A., Wang, H., Lima, A.L., Hundley, M.F., and Hoagland, R.G.: Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films. J. Appl. Phys. 97(094302), 5 (2005).CrossRefGoogle Scholar
Zhu, B., Asaro, R.J., Krysl, P., and Bailey, R.: Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53(18), 4825 (2005).CrossRefGoogle Scholar