Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T13:10:26.091Z Has data issue: false hasContentIssue false

Synthesis and performance of a photocatalytic titania-hydroxyapatite composite

Published online by Cambridge University Press:  31 January 2011

N. Phonthammachai*
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
J. Kim
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
T.J. White
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The photocatalytic degradation of methylene blue (MB) over a porous titania-hydroxyapatite (HAp) composite under ultraviolet radiation was studied. The catalyst was prepared by coating porous HAp with a titanium butoxide [Ti(OBu)4] sol at titania loadings of 17–49 wt%. Quantitative powder x-ray diffraction showed higher proportions of anatase as the calcination temperature increased from 500 to 800 °C due to crystallization of an amorphous precursor. The transformation of anatase to rutile was delayed until 900 °C, demonstrating the high thermal stability of the composite. Decomposition of HAp to α- and β- tricalcium phosphates takes place at 900 °C and is accompanied by the formation of perovskite at 1000 °C. A systematic study of the influence of calcination temperature and titania:HAp ratios demonstrated that for the optimal material, a surface area of 100 m2 g−1 was obtained at a titania loading of 49 wt% and calcination temperature of 600 °C. A highly dispersed suspension of finely ground titania-HAp enhanced the photodegradation of MB, allowed a high percentage recovery of catalyst, and was shown to be recyclable.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ling, C.M., Mohamed, A.R.Bhatia, S.: Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere 57, 547 2004CrossRefGoogle ScholarPubMed
2Peller, J., Wiest, O.Kamat, P.V.: Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds. Environ. Sci. Technol. 37, 1926 2003CrossRefGoogle ScholarPubMed
3Grey, I.E.Wilson, N.C.: Titanium vacancy defects in sol-gel prepared anatase. J. Solid State Chem. 180, 670 2007Google Scholar
4Lim, S.H., Ferraris, C., Schreyer, M., Shih, K., Leckie, J.O.White, T.J.: The influence of cobalt-doping on photocatalytic nano-titania: Crystal chemistry and amorphicity. J. Solid State Chem. 180, 2905 2007Google Scholar
5Lakshmi, S., Renganathan, R.Fujita, S.: Study on TiO2-mediated photocatalytic degradation of methylene blue. J. Photochem. Photobiol., A 88, 163 1995Google Scholar
6Figoli, N.S., Lazaroni, C.L., Keselman, H.R.Largentiere, P.C.: Hydrolysis of chlorobenzene over Cu-promoted hydroxyapatites. J. Catal. 77, 64 1982Google Scholar
7Matsumura, Y., Kanai, H.Moffat, J.B.: Catalytic oxidation of carbon monoxide over stoichiometric and non-stoichiometric hydroxyapatites. J. Chem. Soc., Faraday Trans. 93, 4383 1997Google Scholar
8Nishikawa, H.: Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics. Mater. Lett. 50, 364 2001Google Scholar
9Nishikawa, H.: Surface changes and radical formation on hydroxyapatite by UV irradiation for inducing photocatalytic activation. J. Mol. Catal., A: Chem. 206, 331 2003Google Scholar
10Nakajima, A., Takakuwa, K., Kameshima, Y., Hagiwara, M., Sato, S., Yamamoto, Y., Yoshida, N., Watanaba, T.Okada, K.: Preparation and properties of titania-apatite hybrid films. J. Photochem. Photobiol., A 177, 94 2006Google Scholar
11Hulshoff, J.E.G., Van Dijk, K., Van der Waerden, J.P.C.M., Wolke, J.G.C., Ginsel, L.A.Jansen, J.A.: Biological evaluation of the effect of magnetron sputtered Ca/P coatings on osteoblast-like cells in vitro. J. Biomed. Mater. Res. 29, 967 1995Google Scholar
12Nie, X., Leyland, A.Matthews, A.: Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf. Coat. Technol. 125, 407 2000Google Scholar
13Li, H., Khor, K.A.Cheang, P.: Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials 23, 85 2002Google Scholar
14Ramires, P.A., Romito, A., Cosentino, F.Milella, E.: The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22, 1467 2001Google Scholar
15Balamurugan, A., Balossier, G., Kannan, S., Michel, J.Rajeswari, S.: In vitro biological, chemical and electrochemical evaluation of titania reinforced hydroxyapatite sol-gel coatings on surgical grade 316L SS. Mater. Sci. Eng., C 27, 162 2007Google Scholar
16Kim, H-W., Koh, Y-H., Li, L-H., Lee, S.Kim, H-E.: Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants: Mechanical and in vitro biological performance. Biomaterials 25, 2533 2004Google Scholar
17Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J.Serpone, N.: Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol., A 140, 163 2001Google Scholar
18Zainal, Z., Hui, L.K., Hussein, M.Z., Tanufiq-Yap, Y.H., Abdullah, A.H.Ramli, I.: Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. J. Hazard. Mater. B 125, 113 2005Google Scholar
19Anmin, H., Ming, L.L., Chengkang, C., Huiqin, L.Dali, M.: Preparation of nanocrystals hydroxyapatite/TiO2 compound by hydrothermal treatment. Appl. Catal., B 63, 41 2006Google Scholar
20Lim, S.H., Ferraris, C., Schreyer, M., Shih, K., Leckie, J.O.White, T.J.: The influence of cobalt-doping on photocatalytic nano-titania: Crystal chemistry and amorphicity. J. Solid State Chem. 180, 2905 2007CrossRefGoogle Scholar
21Rodriguez-Lorenzo, L.M., Hart, J.N.Gross, K.A.: Structural and chemical analysis of well-crystallized hydroxyfluorapatites. J. Phys. Chem. B 107, 8316 2003Google Scholar
22Horn, M., Schwerdtfeger, C.F.Meagher, E.P.: Thermal expansion of rutile and anatase. J. Am. Ceram. Soc. 53, 124 1970Google Scholar
23Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W. Jr.Smith, J.V.: Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639 1987Google Scholar
24Yashima, M., Sakai, A., Kamiyama, T.Hoshikawa, A.: Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 175, 272 2003Google Scholar
25Mathew, M., Schroeder, L.W., Duckens, B.Brown, W.E.: The crystal structure of α-Ca3(PO4)2. Acta Crystallogr., Sect. B 33, 1325 1977Google Scholar
26Cho, N.W., Sung, K.P.Chang, S-C.: Synthesis and crystal structure refinement of (1–x)CaTiO3(x)(La1/3Nd1/3)TiO3. RIST Yongu Nonmun 12, 116 1998Google Scholar
27Yoon, K.H., Noh, J.S., Kwon, C.H.Muhammed, M.: Photocatalytic behavior of TiO2 thin films prepared by sol–gel process. Mater. Chem. Phys. 95, 79 2006Google Scholar
28Patil, A.J., Potdar, M.H., Deshpande, S.B., Sainkar, S.R., Mayadevi, S.Date, S.K.: Chemical synthesis of titania (TiO2) powder via mixed precursor route for membrane applications. Mater. Chem. Phys. 68, 7 2001Google Scholar
29Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J.Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 1985Google Scholar
30Kowalczyk, P., Kaneko, K., Solarz, L., Terzyk, A.P., Tanaka, H.Holyst, R.: Modeling of the hysteresis phenomena in finited-sized slitlike nanopores. Langmuir 21, 6613 2005CrossRefGoogle ScholarPubMed
31Turchi, C.S.Ollis, D.F.: Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 122, 178 1990Google Scholar
32Reddy, M. Pratap, Venugopal, A.Subrahmanyam, M.: Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res. 41, 379 2007CrossRefGoogle Scholar
33Burgess, C.G.V., Everett, D.H.Nuttall, S.: Adsorption hysteresis in porous materials. Pure Appl. Chem. 61, 1845 1989Google Scholar
34Nishikawa, H.: Radical generation on hydroxyapatite by UV irradiation. Mater. Lett. 58, 14 2003Google Scholar
35Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C.Herrmann, J-M.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 31, 145 2001Google Scholar
36Senthilkumaar, S., Porkodi, K.Vidyalakshmi, R.: Photodegradation of a textile dye catalyzed by sol-gel derived nanocrystalline TiO2 via ultrasonic irradiation. J. Photochem. Photobiol., A 170, 225 2005Google Scholar
37Chen, D.Ray, A.K.: Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl. Catal., B 23, 143 1999Google Scholar
38Nagaveni, K., Sivalingam, G., Hegde, M.S.Madras, G.: Solar photocatalytic degradation of dyes: High activity of combustion synthesized nano TiO2. Appl. Catal., B 48, 83 2004Google Scholar