Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T01:35:41.820Z Has data issue: false hasContentIssue false

Structural characterization and properties of nanocrystalline Sn1−xCoxO2 based dilute magnetic semiconductors

Published online by Cambridge University Press:  04 May 2015

Tokeer Ahmad*
Affiliation:
Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
Sarvari Khatoon
Affiliation:
Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Monophasic Sn1−xCoxO2 (x = 0.05, 0.10, and 0.15) nanoparticles with tetragonal structure have been successfully synthesized by solvothermal method using oxalate precursor route. Powder x-ray diffraction and selected area electron diffraction studies confirmed highly crystalline cassiterite SnO2 structure. The contraction of lattice constants confirmed the incorporation of Co2+ in SnO2 host lattice. Hexagonal nanoparticles with average grain size of 8–13 nm have been formed. With the increasing Co content, the decreasing crystallite size of SnO2 with increasing surface areas from 194 to 219 m2/g was found. The percentage reflectance increases on increasing the cobalt concentration, and a noticeable blue shift appeared. The band gap was found to be 3.85, 3.91, and 4.09 eV, respectively. Co-doped SnO2 showed distinct magnetic behavior with different Co2+ concentration. For x = 0.05 and 0.10, nanoparticles showed paramagnetism with antiferromagnetic interaction, however, on further increasing x = 0.15, the nanoparticles showed canted antiferromagnetic coupling.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fitzgerald, C.B., Venkatesan, M., Douvalis, A.P., Huber, S., Coey, J.M.D., and Bakas, T.: SnO2 doped with Mn, Fe or Co: Room temperature dilute magnetic semiconductors. J. Appl. Phys. 95, 7390 (2004).Google Scholar
Liu, C.M., Zu, X.T., and Zhou, W.L.: Magnetic interaction in Co-doped SnO2 nano-crystal powders. J. Phys.: Condens. Matter 18, 6001 (2006).Google Scholar
Punnoose, A., Hays, J., Gopal, V., and Shutthanandan, V.: Room temperature ferromagnetism in chemically synthesized Sn1−xCoxO2 powders. Appl. Phys. Lett. 85, 1559 (2004).Google Scholar
Bouaine, A., Brihi, N., Schmerber, G., Bouillet, C.U., Colis, S., and Dinia, A.: Structural, optical and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. C 111, 2924 (2007).Google Scholar
Fitzgerald, C.B., Venkatesan, M., Dorneles, L.S., Gunning, R., Stamenov, P., Coey, J.M.D., Stampe, P.A., Kennedy, R.J., Moreira, E.C., and Sias, U.S.: Magnetism in dilute magnetic oxide thin films based in SnO2 . Phys. Rev. B 74, 115307 (2006).Google Scholar
Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Sarma, S.D., Drew, H.D., Greene, R.L., and Venkatesan, T.: High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ . Phys. Rev. Lett. 91, 077205 (2003).Google Scholar
Ghosh, S., Munshi, D.D., and Mandal, K.: Paramagnetism in single-phase Sn1−xCoxO2 dilute magnetic semiconductors. J. Appl. Phys. 107, 123919 (2010).Google Scholar
Mohanty, S. and Ravi, S.: Magnetic properties of Co-doped SnO2 diluted magnetic semiconductors. Indian J. Phys. 84, 735 (2010).CrossRefGoogle Scholar
Chen, W. and Li, J.: Magnetic and electronic structure properties of Co-doped SnO2 nanoparticles synthesized by the sol-gel-hydrothermal technique. J. Appl. Phys. 109, 083930 (2011).Google Scholar
Liu, X.F., Sun, Y., and Yu, R.H.: Role of oxygen vacancies in tuning magnetic properties of Co-doped SnO2 insulating films. J. Appl. Phys. 101, 123907 (2007).Google Scholar
Xu, Y., Tang, Y., Li, C., Cao, G., Ren, W., Xu, H., and Ren, Z.: Synthesis and room temperature ferromagnetic properties of single-crystalline Co-doped SnO2 nanocrystals via a high magnetic field. J. Alloys Compd. 481, 837 (2009).Google Scholar
Srinivas, K., Vithal, M., Sreedhar, B., Raja, M.M., and Reddy, P.V.: Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors. J. Phys. Chem. C 113, 3543 (2009).Google Scholar
Fang, L.M., Zu, X.T., Li, Z.J., Zhu, S., Liu, C.M., Wang, L.M., and Gao, F.: Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method. J. Mater. Sci.: Mater. Electron. 19, 868 (2008).Google Scholar
Khatoon, S., Coolahan, K., Lofland, S.E., and Ahmad, T.: Optical and magnetic properties of solid solutions of In2−xMnxO3 (0.05, 0.10 and 0.15) nanoparticles. J. Alloys Compd. 545, 162 (2012).Google Scholar
Khatoon, S., Coolahan, K., Lofland, S.E., and Ahmad, T.: Solvothermal synthesis of In2−xCoxO3 (0.05 ≤ x ≤ 0.15) dilute magnetic semiconductors: Optical, magnetic and dielectric properties. J. Am. Ceram. Soc. 96, 2544 (2013).CrossRefGoogle Scholar
Ahmad, T., Khatoon, S., Coolahan, K., and Lofland, S.E.: Solvothermal synthesis, optical and magnetic properties of nanocrystalline Cd1−xMnxO (0.04 < x = 0.10) solid solutions. J. Alloys Compd. 558, 117 (2013).Google Scholar
Ahmad, T., Khatoon, S., Coolahan, K., and Lofland, S.E.: Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles. J. Mater. Res. 28, 1245 (2013).Google Scholar
Ahmad, T., Khatoon, S., and Coolahan, K.: Optical and magnetic properties of Sn1−x Mn x O2 dilute magnetic semiconductor nanoparticles. J. Alloys Compd. 615, 263 (2014).Google Scholar
Kortum, G.: Reflectance Spectroscopy: Principles, Methods, Applications (Springer, New York, 1969).Google Scholar
Alcantara, R., Madrigal, F.J.F., Lavela, P., Vicente, C.P., and Tirado, J.L.: Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries. J. Solid State Electrochem. 6, 55 (2001).Google Scholar
Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1986).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).Google Scholar
Wei, X., Xu, G., Ren, Z., Wang, Y., Shen, G., and Han, G.: Size-controlled synthesis of BaTiO3 nanocrystals via a hydrothermal route. Mater. Lett. 62, 3666 (2008).Google Scholar
Lee, S.J., Kang, K.Y., Han, S.K., Jang, M.S., Chae, B.G., Yang, Y.S., and Kim, S.H.: Phase formation and ferroelectricity of sol-gel derived (Pb, La)TiO3 thin films. Appl. Phys. Lett. 72, 299 (1998).Google Scholar
Samuel, M.S., Bose, L., and George, K.C.: Optical properties of ZnO nanoparticles. Acad. Rev. 16, 57 (2009).Google Scholar
Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954).Google Scholar
Moss, T.S.: The interpretation of the properties of indium antimonide. Proc. Phys. Soc., London, Sect. B 67, 775 (1954).Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).Google Scholar
Barick, K.C., Aslam, M., Dravid, V.P., and Bahadur, D.: Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals. J. Phys. Chem. C 112, 15163 (2008).Google Scholar
Ahmad, T., Khatoon, S., Lofland, S.E., and Thakur, G.S.: Structural characterization and properties of nano-sized Cd1−xCoxO dilute magnetic semiconductors prepared by solvothermal method. Mater. Sci. Semicond. Process. 17, 207 (2014).Google Scholar
Kim, J.H., Kim, H., Kim, D., Ihm, Y.E., and Choo, W.K.: Magnetic properties of epitaxially grown semiconducting Zn1−xCoxO thin films by pulsed laser deposition. J. Appl. Phys. 92, 6066 (2002).Google Scholar