Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T10:03:11.253Z Has data issue: false hasContentIssue false

Simulations of fine ceramics cascade synthesized by the self-propagating high-temperature synthesis method

Published online by Cambridge University Press:  31 January 2011

Bai-Wai Chen
Affiliation:
Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan
Chien-Chong Chen*
Affiliation:
Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

Due to the convective and radiant heat losses, there exists a maximal converted length of a dense pellet synthesized by the self-propagating high-temperature synthesis (SHS) method. In this paper, we numerically investigate the possibility to increase that maximal converted length by cascading two reactant pellets in series, where an interface is naturally and artificially introduced. First, the impacts of both the bulk and interfacial parameters on the SHS process are estimated. The maximal converted length for a single pellet is computed. Next, by varying the interfacial parameters, it is found that more than 10% of extra converted length is obtained by the proposed cascade arrangement. Effects of the bulk parameters on the same purpose are also addressed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Merzhanov, A. G., in Combustion and Plasma Synthesis of High- Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, New York, 1990), p. 1.Google Scholar
2.Kecskes, L. J., Benck, R. F., and Netherwood, P. H. Jr., J. Am. Ceram. Soc. 73, 383 (1990).CrossRefGoogle Scholar
3.Holt, J. B. and Munir, Z. A., J. Mater. Sci. 21, 251 (1986).CrossRefGoogle Scholar
4.Yamada, O., Miyamoto, Y., and Koizumi, M., Am. Ceram. Soc. Bull. 64, 319 (1985).Google Scholar
5.Yamada, O., Miyamoto, Y., and Koizumi, M., J. Am. Ceram. Soc. 70, 206 (1987).CrossRefGoogle Scholar
6.Varma, A. and Lebrat, J-P., Chem. Eng. Sci. 47, 2179 (1992).CrossRefGoogle Scholar
7.Martinenko, V. M. and Borovinskaya, I. P., Proc. Third All- Union Conference on Technological Combustion, Chernogolovka (1978), p. 180.Google Scholar
8.Yamada, O., Miyamoto, Y., and Koizumi, M., J. Mater. Res. 1, 275 (1986).CrossRefGoogle Scholar
9.Pampuch, R., Stobierski, L., and Lis, J., J. Am. Ceram. Soc. 72, 1434 (1989).CrossRefGoogle Scholar
10.Yamada, O., Hirao, K., Koizumi, M., and Miyamoto, Y., J. Am. Ceram. Soc. 72, 1734 (1989).Google Scholar
11.Merzhanov, A. G. and Rogachev, A. S., Pure Appl. Chem. 64, 941 (1992).CrossRefGoogle Scholar
12.Maksimov, E. I. and Shkadinskii, K. G., Combust. Explos. Shock Waves 14, 618 (1978).Google Scholar
13.Khaikin, B. I. and Merzhanov, A. G., Combust. Explos. Shock Waves 2, 22 (1966).CrossRefGoogle Scholar
14.Hardt, A. P. and Phung, P. V., Combust. Flame 21, 77 (1973).CrossRefGoogle Scholar
15.Smith, T. F., Byun, K-H., and Chen, L-D., Combust. Flame 73, 67 (1988).CrossRefGoogle Scholar
16.Viljoen, H. J. and Hlavacek, V., AIChE J. 73, 1595 (1991).CrossRefGoogle Scholar
17.Dunmead, S. D. and Munir, Z. A., J. Am. Ceram. Soc. 75, 175 (1992).Google Scholar
18.Margolis, S. B., SIAM. J. Appl. Math. 43, 351 (1983).CrossRefGoogle Scholar
19.Shkadinskii, K. G., Khaikin, B. I., and Merzhanov, A. G., Combust. Explos. Shock Waves 7, 15 (1971).CrossRefGoogle Scholar
20.Matkowsky, B. J. and Sivashinsky, G. I., SIAM. J. Appl. Math. 35, 465 (1978).CrossRefGoogle Scholar
21.Bodnar, T. A., Fizika Goreniya i Vzryva 25, 40 (1989).Google Scholar
22.Vol'pert, V. A., Vol'pert, A. I., and Merzhanov, A. G., Fizika Goreniya i Vzryva 19, 69 (1983).Google Scholar
23.Margolis, S. B., Karper, H. G., Leaf, G. K., and Matkowsky, B. J., Combust. Sci. Tech. 43, 127 (1985).CrossRefGoogle Scholar
24.Bayliss, A., Matkowsky, B. J., and Minkoff, M., SIAM. J. Appl. Math. 49, 1047 (1989).CrossRefGoogle Scholar
25.Strunin, P. V., Strunina, A. G., Rumanov, E. N., and Merzhanov, A. G., Phys. Lett. A 192, 361 (1994).CrossRefGoogle Scholar
26.Margolis, S. B., Prog. Energ. Combust. Sci. 17, 135 (1991).CrossRefGoogle Scholar
27.Bayliss, A. and Matkowsky, B. J., SIAM J. Appl. Math 50, 437 (1990).CrossRefGoogle Scholar
28.Varma, A., Cao, G., and Morbidelli, M., AIChE J. 36, 1032 (1990).CrossRefGoogle Scholar
29. C. He and Stangle, G. C., J. Mater. Res. 10, 2829 (1995).Google Scholar
30.Bayliss, A. and Matkowsky, B. J., J. Compu. Phys. 71, 147 (1987).CrossRefGoogle Scholar
31.Chen, C-C., Labhabi, A., Chang, H-C., and Kelly, R. E., J. Fluid Mech. 231, 73 (1991).CrossRefGoogle Scholar
32.Chen, B-W., Master Thesis, Dynamics of coupled chaotic systems and simulations of fine ceramics cascade synthesized by the SHS method (Natl. Chung Cheng Univ., 1996).Google Scholar
33.Lee, J-H. and Chen, C-C., unpublished.Google Scholar