Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T20:27:23.209Z Has data issue: false hasContentIssue false

Silicoaluminum carbonitride ceramic resist to oxidation/corrosion in water vapor

Published online by Cambridge University Press:  01 July 2006

Yiguang Wang
Affiliation:
Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816
Weifeng Fei
Affiliation:
Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816
Yi Fan
Affiliation:
Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130032, People's Republic of China
Ligong Zhang
Affiliation:
Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130032, People's Republic of China
Wenge Zhang
Affiliation:
Sporian Microsystem Inc., Lafayette, Colorado 80026
Linan An*
Affiliation:
Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The oxidation behavior of polymer-derived SiAlCN ceramic in a water vapor environment was studied at 1400 °C. The oxidation and corrosion rates of the SiAlCN are much lower than those of SiCN and pure silicon-based ceramics. The material retains about 75% of its original strength after exposure in water vapor for 300 h at 1400 °C. It is believed that the superior resistance of the SiAlCN to water vapor-related oxidation and corrosion is due to the formation of an aluminum-doped silica layer, in which the aluminum has reduced the activity of the silica.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K., Niihara, K.A.: A superplastic covalent crystal composite. Nature 344, 421 (1990).CrossRefGoogle Scholar
2.Raj, R.: Fundamental research in structural ceramics for service near 2000 °C. J. Am. Ceram. Soc. 76, 2147 (1993).CrossRefGoogle Scholar
3.Opila, E.J., Robinson, R.C., Fox, D.X., Wenglarz, R.A., Ferber, M.K.: Additive effects on Si3N4 oxidation/volatilization in water vapor. J. Am. Ceram. Soc. 86, 1262 (2003).CrossRefGoogle Scholar
4.Opila, E.J., Hann, R.E.: Paralinear oxidation of CVD SiC in water vapor. J. Am. Ceram. Soc. 80, 197 (1997).CrossRefGoogle Scholar
5.Opila, E.J.: Variation of the oxidation rate of silicon carbide with water-vapor pressure. J. Am. Ceram. Soc. 82, 625 (1999).CrossRefGoogle Scholar
6.Fox, D.J., Opila, E.J., Nguyen, Q.N., Humphrey, D.L., Lewton, S.M.: Paralinear oxidation of silicon nitride in a water-vapor/oxygen environment. J. Am. Ceram. Soc. 86, 1256 (2003).CrossRefGoogle Scholar
7.Klemm, H.: Corrosion of silicon nitride materials in gas turbine environment. J. Eur. Ceram. Soc. 22, 2735 (2002).CrossRefGoogle Scholar
8.Liew, L., Zhang, W., An, L., Shah, S., Lou, R., Liu, Y., Cross, T., Anseth, K., Bright, V., Raj, R.: Ceramic MEMS—new materials, innovative processing and futuristic applications. Am. Ceram. Soc. Bull. 80, 25 (2001).Google Scholar
9.Tedmon, C.S.: The effect of oxide volatilization on the oxidation kinetics of Cr and Cr–Fe alloys. J. Electrochem. Soc. 142, 925 (1967).Google Scholar
10.Lee, K.N., Fox, D.S., Eldridge, J.I., Zhu, D., Robinson, R.C., Bansal, N.P., Miller, R.A.: Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J. Am. Ceram. Soc. 86, 1299 (2003).CrossRefGoogle Scholar
11.Tortorelli, P.F., More, K.L.: Effects of high water-vapor pressure on oxidation of silicon carbide at 1200 °C. J. Am. Ceram. Soc. 86, 1249 (2003).CrossRefGoogle Scholar
12.Mao, H., Selleby, M., Sundman, B.: Phase equilibria and thermodynamics in the Al2O3–SiO2 system–modeling of mullite and liquid. J. Am. Ceram. Soc. 88, 2544 (2005).CrossRefGoogle Scholar
13.Dhima, A., Stafa, B., Allibert, M.: Activity measurement in steel-making-related oxides melts by differential mass spectrometry. High Temp. Sci. 21, 143 (1986).Google Scholar
14.Yajima, S., Hasegawa, Y., Okamura, K., Matsuzawa, T.: Development of high-tensile-strength silicon carbide fiber using an organosilicon polymer precursor. Nature 273, 525 (1978).CrossRefGoogle Scholar
15.An, L., Xu, W., Rajagopalan, S., Wang, C., Wang, H., Kapat, J., Chow, L., Fan, Y., Zhang, L., Jiang, D., Guo, B., Liang, J., Vaidyanathan, R.: Carbon nanotube reinforced polymer-derived ceramic composites. Adv. Mater. 16, 2036 (2004).CrossRefGoogle Scholar