Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:43:13.008Z Has data issue: false hasContentIssue false

Self-assembly synthesis and mechanism investigation of branched core–shell hybrids of tin nanowires and carbon nanotubes

Published online by Cambridge University Press:  27 November 2012

Ruying Li
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
Yong Zhang
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
Xueliang Sun*
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Branched core–shell hybrids of tin nanowires and carbon nanotubes have been successfully obtained on silicon substrate via a self-assembly process by chemical vapor deposition. Structure characterization unveiled that the nanostructures are the hybrids of branched single-crystalline β-Sn nanowires coated with amorphous carbon nanotubes. Detailed investigation demonstrates that the amount of introduced ethylene plays a crucial role in triggering the morphology change of the product from freestanding core–shell hybrids to branched hybrids accompanying with a thickness and surface morphology change of carbon shell. Architecture of the branched core–shell hybrids has been categorized and the mechanism has been discussed. This kind of branched hybrids may find great potential applications in building multipath nanoelectronic components, lithium-ion battery electrodes, and enhanced superconducting nanodevices as well.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362(6420), 522 (1993).CrossRefGoogle Scholar
Pradhan, B.K., Kyotani, T., and Tomita, A.: Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem. Commun. 14, 1317 (1999).CrossRefGoogle Scholar
He, Z.B., Lee, C.S., Maurice, J.L., Pribat, D., Haghi-Ashtiani, P., and Cojocaru, C.S.: Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor deposition. Carbon 49(14), 4710 (2011).CrossRefGoogle Scholar
Gao, Y.H. and Bando, Y.: Nanotechnology: Carbon nanothermometer containing gallium. Nature 415, 599 (2002).CrossRefGoogle Scholar
Dorozhkin, P.S., Tovstonog, S.V., Golberg, D., Zhan, J.H., Ishikawa, Y., Shiozawa, M., Nakanishi, H., Nakata, K., and Bando, Y.: A Liquid-Ga-filled carbon nanotube: A miniaturized temperature sensor and electrical switch. Small 1(11), 1088 (2005).CrossRefGoogle ScholarPubMed
Bao, J.C., Tie, C.Y., Xu, Z., Suo, Z.Y., Zhou, Q.F., and Hong, J.M.: A facile method for creating an array of metal-filled carbon nanotubes. Adv.Mater. 14(20), 1483 (2002).3.0.CO;2-6>CrossRefGoogle Scholar
Che, R.C., Peng, L.M., Duan, X.F., Chen, Q., and Liang, X.L.: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401 (2004).CrossRefGoogle Scholar
Svensson, K., Olin, H., and Olsson, E.: Nanopipettes for metal transport. Phys. Rev. Lett. 93(14), 1459011 (2004).CrossRefGoogle ScholarPubMed
Toh, S., Kaneko, K., Hayashi, Y., Tokunaga, T., and Moon, W.J.: Microstructure of metal-filled carbon nanotubes. J. Electron Microsc. 53(2), 149 (2004).CrossRefGoogle ScholarPubMed
Ma, D.K., Zhang, M., Xi, G.C., Zhang, J.H., and Qian, Y.T.: Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and chainlike beta-Ag2Se nanorods inside carbonaceous nanotubes. Inorg. Chem. 45(12), 4845 (2006).CrossRefGoogle ScholarPubMed
Dong, L.X., Tao, X.Y., Zhang, L., Zhang, X.B., and Nelson, B.J.: Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett., 7(1), 58 (2007).CrossRefGoogle ScholarPubMed
Golberg, D., Costa, P.M.F.J., Mitome, M., Hampel, S., Haase, D., Mueller, C., Leonhardt, A., and Bando, Y.: Copper-filled carbon nanotubes: Rheostatlike behavior and femtogram copper mass transport. Adv. Mater. 19(15), 1937 (2007).CrossRefGoogle Scholar
Zhao, Y.X., Zhang, Y., Li, Y.P., and Yan, Z.F.: A flexible chemical vapor deposition method to synthesize copper@carbon core–shell structured nanowires and the study of their structural electrical properties. New J. Chem. 36(5), 1161 (2012).CrossRefGoogle Scholar
Guan, H., Wang, X., Chen, S.M., Bando, Y., and Golberg, D.: Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries. Chem. Commun. 47(44), 12098 (2011).CrossRefGoogle ScholarPubMed
Elías, A.L., Rodríguez-Manzo, J.A., McCartney, M.R., Golberg, D., Zamudio, A., Baltazar, S.E., López-Urías, F., Muñoz-Sandoval, E., Gu, L., Tang, C.C., Smith, D.J., Bando, Y., Terrones, H., Terrones, M.: Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. Nano Lett. 5(3), 467 (2005).CrossRefGoogle ScholarPubMed
Lv, R.T., Cao, A.Y., Kang, F.Y., Wang, W.X., Wei, J.Q., Gu, J.L., Wang, K.L., and Wu, D.H.: Single-crystalline permalloy nanowires in carbon nanotubes: Enhanced encapsulation and magnetization. J. Phys. Chem. C 111(30), 11475 (2007).CrossRefGoogle Scholar
Barsoum, M.W., Hoffman, E.N., Doherty, R.D., Gupta, S., and Zavaliangos, A.: Driving force and mechanism for spontaneous metal whisker formation. Phys. Rev. Lett. 93(20), 206104 (2004).CrossRefGoogle ScholarPubMed
Chen, Y., Cui, X., Zhang, K., Pan, D., Zhang, S., Wang, B., and Hou, J.G.: Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 369(1–2), 16 (2003).CrossRefGoogle Scholar
Ying, Z., Wan, Q., Song, Z.T., and Feng, S.L.: SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology 15(11), 1682 (2004).CrossRefGoogle Scholar
Tian, M.L., Wang, J.G., Snyder, J., Kurtz, J., Liu, Y., Schiffer, P., Mallouk, T.E., and Chan, M.H.W.: Synthesis and characterization of superconducting single-crystal Sn nanowires. Appl. Phys. Lett. 83, 1620 (2003).CrossRefGoogle Scholar
Hsu, Y.J. and Lu, S.Y.: Vapor-solid growth of Sn nanowires: Growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398 (2005).CrossRefGoogle ScholarPubMed
Zou, Y.Q. and Wang, Y.: Sn@CNT nanostructures Rooted in graphene with high and fast Li-storage capacities. ACS Nano 5(10), 8108 (2011).CrossRefGoogle ScholarPubMed
Lee, H. and Cho, J.: Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 7(9), 2638 (2007).CrossRefGoogle ScholarPubMed
Cho, J.: Control of the carbon shell thickness in Sn70Ge30@carbon core-shell nanoparticles using alkyl terminators: Its implication for high-capacity lithium battery anode materials. Electrochim. Acta 54(2), 461 (2008).CrossRefGoogle Scholar
Kasai, S., Nakamura, T., and Shiratori, Y.: Multipath-switching device utilizing a GaAs-based multiterminal nanowire junction with size-controlled dual Schottky wrap gates. Appl. Phys. Lett. 90, 2035041 (2007).CrossRefGoogle Scholar
Park, W.I., Kim, J.S., Yi, G.C., and Lee, H.J.: ZnO nanorod logic circuits. Adv.Mater. 17(11), 13931397 (2005).CrossRefGoogle ScholarPubMed
Suyatin, D.B., Sun, J., Fuhrer, A., Wallin, D., Fröberg, L.E., Karlsson, L.S., Maximov, I., Wallenberg, L.R., Samuelson, L., and Xu, H.Q.: Electrical properties of self-assembled branched InAs nanowire junctions. Nano Lett. 8(4), 1100 (2008).CrossRefGoogle ScholarPubMed
Liu, X.H., Lin, Y.J., Zhou, S., Sheehan, S., and Wang, D.W.: Complex nanostructures: Synthesis and energetic applications. Energies 3, 285 (2010).CrossRefGoogle Scholar
Cui, Q.Z., Gao, F., Mukherjee, S., and Gu, Z.Y.: Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems. Small 5(11), 1246 (2009).CrossRefGoogle ScholarPubMed
Jun, Y.W., Choi, J.S., and Cheon, J.W.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45, 3414 (2006).CrossRefGoogle ScholarPubMed
Dick, K.A., Deppert, K., Larsson, M.W., Mårtensson, T., Seifert, W., Wallenberg, L.R., and Samuelson, L.: Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380 (2004).CrossRefGoogle ScholarPubMed