Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T02:01:02.616Z Has data issue: false hasContentIssue false

The role of the thickness on the tribological properties of FeAlCr intermetallic alloy thin films deposited on austenitic steel

Published online by Cambridge University Press:  20 November 2020

Rodolfo L.P. Gonçalves
Affiliation:
Laboratório de Plasmas e Processos (LAB-LPP), Departamento de Física, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP 12228-900, Brazil Escola de Engenharia, Universidade Presbiteriana Mackenzie, R. da Consolação, 930 – Consolação, São Paulo, SP 01302-907, Brazil
Katia R. Cardoso
Affiliation:
Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, Rua Talim, 330, São José dos Campos, SP 12231-280, Brazil
Walter Miyakawa
Affiliation:
Laboratório de Plasmas e Processos (LAB-LPP), Departamento de Física, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP 12228-900, Brazil
Gisele F.C. Almeida*
Affiliation:
Escola de Engenharia, Universidade Presbiteriana Mackenzie, R. da Consolação, 930 – Consolação, São Paulo, SP 01302-907, Brazil Centro de Ciência e Tecnologia de Materiais, Instituto de Pesquisas Energéticas e Nucleares, Av. Prof. Lineu Prestes, 2242 – Butantã, São Paulo, SP 13083-100, Brazil
Argemiro S. da Silva Sobrinho
Affiliation:
Laboratório de Plasmas e Processos (LAB-LPP), Departamento de Física, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP 12228-900, Brazil
Marcos Massi
Affiliation:
Escola de Engenharia, Universidade Presbiteriana Mackenzie, R. da Consolação, 930 – Consolação, São Paulo, SP 01302-907, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Austenitic stainless steel is used in several industrial branches due to its mechanical and thermal properties, and to its good corrosion resistance. With low cost and biocompatibility, it is used to manufacture prostheses and devices for bone fixation. However, direct contact with body fluids may cause corrosion. Thin films of FeAlCr intermetallic alloy can be used to increase service life of prostheses and avoid replacement surgeries. The aim of this work was to cover the austenitic stainless steel to study the effect of target–substrate distance on the film characteristics. Coatings were performed using the magnetron sputtering technique with the substrate positioned at different distances from the target. The influence on film thickness, morphology, roughness, and adhesion to the substrate was investigated. The thin films of FeAlCr (160 nm thick deposited at 100 mm far from the substrate) were formed by smaller particles (11.2 nm long), densely packed (551,000 particles/mm2), with flat and regular appearance, and greater adherence to the substrate.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

e Silva, E.d.F. and de Oliveira, L.F.C.: Caracterização química e metalográfica dos aços inoxidáveis de implantes removidos de pacientes. Acta Ortop. Bras. 19, 280 (2011).CrossRefGoogle Scholar
Fonseca, K.B., Pereira, H.H., and Silva, S.N.: Evaluation of failed metallic knee and femoral implants. Rev. Matér. 10, 472 (2005).Google Scholar
Talha, M., Behera, C.K., and Sinha, O.P.: A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater. Sci. Eng., C 33, 3563 (2013).CrossRefGoogle ScholarPubMed
Disegi, J.A. and Eschbach, L.: Stainless steel in bone surgery. Injury 31, D2 (2000).CrossRefGoogle ScholarPubMed
Park, J.B. and Bronzino, J.D.: Biomaterials principles and applications (CRC Press, Boca Raton, Florida, USA, 2002), p. 250.CrossRefGoogle Scholar
Eddy Jai Poinern, G., Brundavanam, S., and Fawcett, D.: Biomedical magnesium alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2, 218 (2012).CrossRefGoogle Scholar
Manivasagam, G., Dhinasekaran, D., and Rajamanickam, A.: Biomedical implants: Corrosion and its prevention—A review. Recent Patents Corros. Sci. 2, 40 (2010).CrossRefGoogle Scholar
Sumita, M., Hanawa, T., and Teoh, S.H.: Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—Review. Mater. Sci. Eng., C 24, 753 (2004).CrossRefGoogle Scholar
Semedo, M.F.F.R.S.: Importância Médico-Legal Dos Metais Essenciais: Cobre e Zinco. Master's Thesis, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 2014.Google Scholar
Okazaki, Y. and Gotoh, E.: Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26, 11 (2005).CrossRefGoogle ScholarPubMed
Fini, M., Aldini, N.N., Torricelli, P., Giavaresi, G., Borsari, V., Lenger, H., Bernauer, J., Giardino, R., Chiesa, R., and Cigada, A.: A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation. Biomaterials 24, 49294939 (2003).CrossRefGoogle Scholar
Merritt, K. and Rodrigo, J.J.: Immune response to synthetic materials. Clin. Orthop. Relat. Res. 326, 71 (1996).CrossRefGoogle Scholar
Holzapfel, B.M., Reichert, J.C., Schantz, J.-T., Gbureck, U., Rackwitz, L., Nöth, U., Jakob, F., Rudert, M., Groll, J., and Hutmacher, D.W.: How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 65, 581 (2013).CrossRefGoogle Scholar
Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., and Spigarelli, S.: Wear resistance investigation of titanium nitride-based coatings. Ceram. Int. 41, 10349 (2015).CrossRefGoogle Scholar
Santos, S.C., Sales, W.F., da Silva, F.J., Franco, S.D., and da Silva, M.B.: Tribological characterisation of PVD coatings for cutting tools. Surf. Coat. Technol. 184, 141 (2004).CrossRefGoogle Scholar
Aguado, M.A.M.: Desarrollo de Aleaciones Fe-Al-Cr Como Posibles Biomateriales: Caracterización Mecánica y Comportamiento a Oxidación Universidad Complutense de Madrid, Madrid, 2004.Google Scholar
Ciapetti, G., González-Carrasco, J.L., Savarino, L., Montealegre, M.A., Pagani, S., and Baldini, N.: Quantitative assessment of the response of osteoblast- and macrophage-like cells to particles of Ni-free Fe-base alloys. Biomaterials 26, 849 (2005).CrossRefGoogle ScholarPubMed
González-Carrasco, J.L., Ciapetti, G., Montealegre, M.A., Savarino, L., Muñoz-Morris, M.A., and Baldini, M.: Potential of FeAlCr intermetallics reinforced with nanoparticles as new biomaterials for medical devices. J. Biomed. Mater. Res. 80, 201 (2007).CrossRefGoogle ScholarPubMed
Borchardt, G. (2005): Aleaciones intermetálicas de base hierro no-ferromagnéticas y biocompatibles para aplicaciones biomédicas. Patent nº WO2005005678A1Google Scholar
Neves, D.V.F., da Silva Sobrinho, A.S., Massi, M., Gonzalez-Carrasco, J.L., Lieblich, M., and Cardoso, K.R.: Growth and surface characterization of FeAlCr thin films deposited by magnetron sputtering for biomedical applications. Thin Solid Films 608, 71 (2016).CrossRefGoogle Scholar
Rigsbee, J.M.: Plasma- and ion-beam assisted physical vapor deposition: processes and materials. In Structure Relationships in Surface-Modified Ceramics, McHargue, C.J., Kossowsky, R., and Hofer, W.O.: Springer, 170, Dordrecht, 1989), pp. 399416.CrossRefGoogle Scholar
Bortoleto, J.R.R.: Crescimento e Caracterização Estrutural de Nanoestruturas Semicondutoras Baseadas Na Liga InP. Doctoral Thesis, Universidade Estadual de Campinas, 2005.Google Scholar
Rosa, A.M.: Análise Morfológica de Filmes Finos de Óxido de Zinco. Master's Thesis, Universidade Estadual Paulista, 2013.Google Scholar
Dai, X., Zhou, A., Feng, L., Wang, Y., Xu, J., and Li, J.: Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature. Thin Solid Films 567, 64 (2014).CrossRefGoogle Scholar
Betz, G. and Wehner, G.K.: Sputtering of multicomponent materials. In Sputtering by Particle Bombardment II. Topics in Applied Physics, Behrish, R.: Springer, Berlin, Heidelberg, 52, 1983), pp. 1190.CrossRefGoogle Scholar
Szymonski, M., Bhattacharya, R.S., Overeijnder, H., and De Vries, A.E.: Sputtering of an AgAu alloy by bombardment with 6keV Xe+ ions. J. Phys. D. Appl. Phys. 11, 751 (1978).CrossRefGoogle Scholar
Szymoński, M. and Bhattacharya, R.S.: The sputtering of gallium arsenide at elevated temperatures. Appl. Phys. 20, 207 (1979).CrossRefGoogle Scholar
Szymoński, M.: Sputtering of Cu and Zn atoms from elemental and alloy targets. Appl. Phys. 23, 89 (1980).CrossRefGoogle Scholar
Lam, N.Q. and Johannessen, K.: Physical sputtering of CuNi alloys: A molecular dynamics study. Nucl. Inst. Methods Phys. Res. B 71, 371 (1992).CrossRefGoogle Scholar
Gschneidner, K.A.: Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. 16, 275 (1964).CrossRefGoogle Scholar
Gnaser, H.: Energy and angular distributions of sputtered species. In Sputtering by Particle Bombardment (Springer, Berlin, Heidelberg, 110, 2007), pp. 231328.CrossRefGoogle Scholar
Kittel, C.: Introduction to Solid State Physics, 3rd ed. (John Wiley & Sons, New York, 2004).Google Scholar
Kaxiras, E.: Atomic and Electronic Structure of Solids (Cambridge University Press, Cambridge, UK, 2007).Google Scholar
Brading, H.J., Morton, P.H., Bell, T., and Earwaker, L.G.: The structure and composition of plasma nitrided coatings on titanium. Nucl. Instrum. Methods Phys. Res., Sect. B 66, 230 (1992).CrossRefGoogle Scholar
Sarkar, S., Pradhan, S.K., and Jeevitha, M.: Factors influencing the nanostructure of obliquely deposited thin films. Surf. Eng. 35, 227 (2019).CrossRefGoogle Scholar
Lin, Q., Zhang, F., Han, F., Zhao, M., and Jiang, Z.: Influence of surface roughness on the adhesion hysteresis of nano thin film. Micro Nano Lett. 14, 1278 (2019).CrossRefGoogle Scholar
Menga, N., Afferrante, L., and Carbone, G.: Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int. J. Solids Struct. 88–89, 101 (2016).CrossRefGoogle Scholar
Zhang, H., Liu, H., Zhou, A., and Yuan, C.: Influence of the distance between target and substrate on the properties of transparent conducting Al-Zr co-doped zinc oxide thin films. J. Semicond. 30(11), 113002-1113002-4 (2009).Google Scholar
Vidakis, N., Antoniadis, A., and Bilalis, N.. J. Mater. Process. Technol. 143–144(1), 481485 (2003).CrossRefGoogle Scholar
Verein Deutscher Ingenieure Normen VDI 3198: Düsseldorf, Germany, 1992Google Scholar
American Society for Testing and Materials (ASTM): ASTM C1624 - Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, 2015Google Scholar