Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T08:01:18.241Z Has data issue: false hasContentIssue false

Reactive conversion of polycrystalline SnO2 into single-crystal nanofiber arrays at low oxygen partial pressure

Published online by Cambridge University Press:  31 January 2011

Carmen M. Carney
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43212
Sheikh A. Akbar*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43212
Ye Cai
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Sehoon Yoo
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Kenneth H. Sandhage*
Affiliation:
School of Materials Science and Engineering, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Single-crystal SnO2 nanofibers have been formed from SnO2 polycrystals via reaction at low oxygen partial pressures. Polycrystalline SnO2 disks coated with Au nanoparticles were exposed to humid H2/N2 at 700 to 800 °C. Single-crystal SnO2 nanofibers formed beneath Au nanoparticles, with the nanofiber length oriented parallel to the [100] crystallographic direction of SnO2. Because this simple process does not require either a separate source of a Sn–O-bearing vapor species located upstream of the substrate or a temperature gradient, single-crystal nanofibers may be formed on large area SnO2-bearing substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1O’Regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 1991CrossRefGoogle Scholar
2Cui, J., Wang, A., Edleman, N.L., Ni, J., Lee, P., Armstrong, N.R., Marks, T.J.: Indium tin oxide alternatives—High work function transparent conducting oxides as anodes for organic light-emitting diodes. Adv. Mater. 13, 1476 20013.0.CO;2-Y>CrossRefGoogle Scholar
3Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 2003CrossRefGoogle ScholarPubMed
4Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., Miyasaka, T.: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 1997CrossRefGoogle Scholar
5Nicholas, C.P., Marks, T.J.: Sulfated tin oxide nanoparticles as supports for molecule-based olefin polymerization catalysts. Nano Lett. 4, 1557 2004CrossRefGoogle Scholar
6Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 2005CrossRefGoogle Scholar
7Albert, K.J., Lewis, N.S., Schauer, C.L., Sotzing, G.A., Stitzel, S.H., Vaid, T.P., Walt, D.R.: Cross-reactive chemical sensor arrays. Chem. Rev. 100, 2595 2000CrossRefGoogle ScholarPubMed
8Harrison, P.G., Willett, M.J.: The mechanism of operation of tin(iv) oxide carbon monoxide sensors. Nature 332, 337 1988CrossRefGoogle Scholar
9Comini, E., Guidi, V., Malagu, C., Martinelli, G., Pan, Z., Sberveglieri, G., Wang, Z.L.: Electrical properties of tin dioxide two-dimensional nanostructures. J. Phys. Chem. B 108, 1882 2004CrossRefGoogle Scholar
10Chen, X.H., Moskovits, M.: Observing catalysis through the agency of the participating electrons: Surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett. 7, 807 2007CrossRefGoogle Scholar
11Arnold, M.S., Avouris, P., Pan, Z.W., Wang, Z.L.: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659 2003CrossRefGoogle Scholar
12Li, Q.H., Chen, Y.J., Wan, Q., Wang, T.H.: Thin film transistors fabricated by in situ growth of SnO2 nanobelts on Au/Pt electrodes. Appl. Phys. Lett. 85, 1805 2004CrossRefGoogle Scholar
13Liu, Z., Zhang, D., Han, S., Li, C., Tang, T., Jin, W., Liu, X., Lei, B., Zhou, C.: Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv. Mater. 15, 1754 2003CrossRefGoogle Scholar
14Liu, Y., Dong, J., Liu, M.: Well-aligned “nano-box-beams” of SnO2. Adv. Mater. 16, 353 2004CrossRefGoogle Scholar
15Wang, C-F., Xie, S-Y., Lin, S-C., Cheng, X., Zhang, X-H., Huang, R-B., Zheng, L-S.: Glow discharge growth of SnO2 nano-needles from SnH4. Chem. Commun. 1766 2004CrossRefGoogle ScholarPubMed
16Hu, J., Bando, Y., Liu, Q., Golberg, D.: Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater. 13, 493 2003CrossRefGoogle Scholar
17Wang, J.X., Liu, D.F., Yan, X.Q., Yuan, H.J., Ci, L.J., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.: Growth of SnO2 nanowires with uniform branched structures. Solid State Commun. 130, 89 2004CrossRefGoogle Scholar
18Hu, J.Q., Bando, Y., Golberg, D.: Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. Chem. Phys. Lett. 372, 758 2003CrossRefGoogle Scholar
19Dai, Z.R., Pan, Z.W., Wang, Z.L.: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9 2003CrossRefGoogle Scholar
20Nguyen, P., Ng, H.T., Kong, J., Cassell, A.M., Quinn, R., Li, J., Han, J., McNeil, M., Meyyappan, M.: Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett. 3, 925 2003CrossRefGoogle Scholar
21Wan, Q., Wei, M., Zhi, D., MacManus-Driscoll, J.L., Blamire, M.G.: Epitaxial growth of vertically aligned and branched single-crystalline tin-doped indium oxide nanowire arrays. Adv. Mater. 18, 234 2006CrossRefGoogle Scholar
22Cerri, J.A., Leite, E.R., Gouvea, D., Longo, E., Varela, J.A.: Effect of cobalt(III) oxide and manganese(IV) oxide on sintering of tin(IV) oxide. J. Am. Ceram. Soc. 79, 799 1996CrossRefGoogle Scholar
23Barin, I.: Thermochemical Data of Pure Substances VCH Verlagsgesellschaft Weinheim, Germany 1995CrossRefGoogle Scholar
24Baur, W.H., Khan, A.A.: Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallogr., B 27, 2133 1971CrossRefGoogle Scholar
25Maier, J., Gopel, W.: Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide. J. Solid State Chem. 72, 293 1988CrossRefGoogle Scholar
26Mizusaki, J., Koinuma, H., Shimoyama, K-I., Kawasaki, M., Fueki, K.: High temperature gravimetric study on nonstoichiometry and oxygen adsorption of SnO2. J. Solid State Chem. 88, 443 1990CrossRefGoogle Scholar
27Li-Zi, Y., Zhi-Tong, S., Chan-Zheng, W.: A study on the nonstoichiometry of tin oxides by coulometric titration. Solid State Ionics 50, 203 1992CrossRefGoogle Scholar
28Kamp, B., Merkle, R., Lauck, R., Maier, J.: Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure. J. Solid State Chem. 178, 3027 2005CrossRefGoogle Scholar