Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T07:00:22.487Z Has data issue: false hasContentIssue false

Quantitative chemical analysis of fluorite-to-perovskite transformations in (Pb,La)(Zr,Ti)O3 PLZT thin films

Published online by Cambridge University Press:  31 January 2011

Chad M. Parish*
Affiliation:
Materials Science and Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185
Geoff L. Brennecka
Affiliation:
Materials Science and Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185
Bruce A. Tuttle
Affiliation:
Materials Science and Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185
Luke N. Brewer
Affiliation:
Materials Science and Engineering, Sandia National Laboratories, Albuquerque, New Mexico 87185
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Lead loss during processing of solution-derived Pb(Zr,Ti)O3 (PZT)-based thin-films can result in the formation of a Pb-deficient, nonferroelectric fluorite phase that is detrimental to dielectric properties. It has recently been shown that this nonferroelectric fluorite phase can be converted to the desired perovskite phase by postcrystallization treatment. Here, quantitative standard-based energy-dispersive x-ray spectrometry (EDS) in a scanning transmission electron microscope (STEM) is used to study cation distribution before and after this fluorite-to-perovskite transformation. Single-phase perovskite PbZr0.53Ti0.47O3 (PZT 53/47) and Pb0.88La0.12Zr0.68Ti0.29O3 (PLZT 12/70/30) specimens that underwent this treatment were found to be chemically indistinguishable from the perovskite present in the multiphase specimens prior to the fluorite-to-perovskite transformation. Significant Zr–Ti segregation is found in PLZT 12/70/30, but not in PZT 53/47. Slight La-segregation was seen in rapidly crystallized PLZT, but not in more slowly crystallized PLZT.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Trolier-McKinstry, S., Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7 2004CrossRefGoogle Scholar
2Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., Streiffer, S.: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 2006Google Scholar
3Sigman, J., Brennecka, G.L., Clem, P.G., Tuttle, B.A.: Fabrication of perovskite-based high-value integrated capacitors by chemical solution deposition. J. Am. Ceram. Soc. 91, 1851 2008CrossRefGoogle Scholar
4Hardtl, K.H., Rau, H.: PbO vapor pressure in the Pb(Ti1−xZrx)O3 system. Solid State Commun. 7, 41 1969CrossRefGoogle Scholar
5Holman, R.L., Fulrath, R.M.: Intrinsic nonstoichiometry in lead zirconate titanate system determined by Knudsen effusion. J. Appl. Phys. 44, 5227 1973CrossRefGoogle Scholar
6Snow, G.S.: Improvements in atmosphere sintering of transparent PLZT ceramics. J. Am. Ceram. Soc. 56, 479 1973CrossRefGoogle Scholar
7Carim, A.H., Tuttle, B.A., Doughty, D.H., Martinez, S.L.: Microstructure of solution-processed lead zirconate titanate (PZT) thin-films. J. Am. Ceram. Soc. 74, 1455 1991Google Scholar
8Reaney, I.M., Brooks, K., Klissurska, R., Pawlaczyk, C., Setter, N.: Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films. J. Am. Ceram. Soc. 77, 1209 1994Google Scholar
9Tuttle, B.A., Headley, T.J., Bunker, B.C., Schwartz, R.W., Zender, T.J., Hernandez, C.L., Goodnow, D.C., Tissot, R.J., Michael, J., Carim, A.H.: Microstructural evolution of Pb(Zr,Ti)O3 thin-films prepared by hybrid metalloorganic decomposition. J. Mater. Res. 7, 1876 1992CrossRefGoogle Scholar
10Subramanian, M.A., Aravamudan, G., Rao, G.V.S.: Oxide pyrochlores—A review. Prog. Solid State Chem. 15, 55 1983Google Scholar
11Wilkinson, A.P., Speck, J.S., Cheetham, A.K., Natarajan, S., Thomas, J.M.: In-situ x-ray-diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x = 0.0, 0.55, 1.0). Chem. Mater. 6, 750 1994CrossRefGoogle Scholar
12Brennecka, G.L., Parish, C.M., Tuttle, B.A., Brewer, L.N., Rodriguez, M.A.: Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films. Adv. Mater. 20, 1407 2008Google Scholar
13Fukuda, Y., Aoki, K.: Effects of excess Pb and substrate on crystallization processes of amorphous Pb(Zr,Ti)O3 thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys., Part 1 36, 5793 1997Google Scholar
14Seifert, A., Lange, F.F., Speck, J.S.: Epitaxial-growth of PbTiO3 thin-films on (001) SrTiO3 from solution precursors. J. Mater. Res. 10, 680 1995CrossRefGoogle Scholar
15Lefevre, M.J., Speck, J.S., Schwartz, R.W., Dimos, D., Lockwood, S.J.: Microstructural development in sol-gel derived lead zirconate titanate thin films: The role of precursor stoichiometry and processing environment. J. Mater. Res. 11, 2076 1996CrossRefGoogle Scholar
16Brennecka, G.L., Tuttle, B.A.: Fabrication of ultrathin film capacitors by chemical solution deposition. J. Mater. Res. 22, 2868 2007CrossRefGoogle Scholar
17Tani, T., Payne, D.A.: Lead-oxide coatings on sol gel-derived lead lanthanum zirconium titanate thin-layers for enhanced crystallization into the perovskite structure. J. Am. Ceram. Soc. 77, 1242 1994CrossRefGoogle Scholar
18Chen, S.Y., Chen, I.W.: Temperature-time texture transition of Pb(Zr1−xTix)O3 thin-films. 1. Role of Pb-rich intermediate phases. J. Am. Ceram. Soc. 77, 2332 1994CrossRefGoogle Scholar
19Aggarwal, S., Madhukar, S., Nagaraj, B., Jenkins, I.G., Ramesh, R., Boyer, L., Evans, J.T.: Can lead nonstoichiometry influence ferroelectric properties of Pb(Zr,Ti)O3 thin films? Appl. Phys. Lett. 75, 716 1999Google Scholar
20Kaewchinda, D., Chairaungsri, T., Naksata, M., Milne, S.J., Brydson, R.: TEM characterisation of PZT films prepared by a diol route on platinised silicon substrates. J. Eur. Ceram. Soc. 20, 1277 2000CrossRefGoogle Scholar
21Impey, S.A., Huang, Z., Patel, A., Beanland, R., Shorrocks, N.M., Watton, R., Whatmore, R.W.: Microstructural characterization of sol-gel lead-zirconate-titanate thin films. J. Appl. Phys. 83, 2202 1998Google Scholar
22Brennecka, G.L., Parish, C.M., Tuttle, B., Brennecka, G.L., Wheeler, J.S.: Recent advances in the fabrication of solution-derived thin and ultrathin multilayer capacitorsProceedings of the International Symposium on the Applications of Ferroelectrics 2008, edited by P. Clem and B. Tuttle IEEE Santa Fe, NM 2008 TF026Google Scholar
23Muralt, P.: Texture control and seeded nucleation of nanosize structures of ferroelectric thin films. J. Appl. Phys. 100, 051605 2006Google Scholar
24Franke, I., Roleder, K., Klimontko, J., Ratuszna, A., Soszynski, A.: Anomalous piezoelectric and elastic properties of a tetragonal PZT ceramic near morphotropic phase boundary. J. Phys. D: Appl. Phys. 38, 749 2005CrossRefGoogle Scholar
25Etin, A., Shter, G.E., Baltianski, S., Grader, G.S., Reisner, G.M.: Controlled elemental depth profile in sol-gel-derived PZT films. J. Am. Ceram. Soc. 89, 2387 2006CrossRefGoogle Scholar
26Bernik, S., Marinenko, R.B., Holc, J., Samardzija, Z., Ceh, M., Kosec, M.: Compositional homogeneity of ferroelectric (Pb,La)(Ti,Zr)O3 thick films. J. Mater. Res. 18, 515 2003Google Scholar
27Calame, F., Muralt, P.: Growth and properties of gradient free sol-gel lead zirconate titanate thin films. Appl. Phys. Lett. 90, 062907 2007CrossRefGoogle Scholar
28Sugiyama, O., Murakami, K., Kaneko, S.: XPS analysis of surface layer of sol-gel-derived PZT thin films. J. Eur. Ceram. Soc. 24, 1157 2004Google Scholar
29Lakeman, C.D.E., Xu, Z.K., Payne, D.A.: On the evolution of structure and composition in sol-gel-derived lead-zirconate-titanate thin-layers. J. Mater. Res. 10, 2042 1995CrossRefGoogle Scholar
30Drazic, G., Kosec, M.: Analytical electron microscopy of ferroelectric ceramic materials. Ferroelectrics 201, 23 1997CrossRefGoogle Scholar
31Dutschke, A., Meinhardt, J., Sporn, D.: Analysis of the phase content and Zr:Ti fluctuation phenomena in PZT sol-gel films with a nominal composition near the morphotropic phase boundary. J. Eur. Ceram. Soc. 24, 1579 2004CrossRefGoogle Scholar
32Assink, R.A., Schwartz, R.W.: H-1 and C-13 NMR investigations of Pb(Zr,Ti)O3 thin-film precursor solutions. Chem. Mater. 5, 511 1993Google Scholar
33Williams, D.B.: Practical Analytical Electron Microscopy in Materials Science Philips Electron Instruments Mahwah, NJ 1984Google Scholar
34Cliff, G., Lorimer, G.W.: The quantitative analysis of thin specimens. J. Microsc. 103, 203 1975CrossRefGoogle Scholar
35Goldstein, J.I., Williams, D.B., Cliff, G.: Quantitative x-ray analysis in Principles of Analytical Electron Microscopy, edited by D.C. Joy, A.D. Romig Jr., and J.I. Goldstein Plenum New York 1986 155Google Scholar
36Edington, J.W.: Practical Electron Microscopy in Materials Science Techbooks Herndon, VA 1976Google Scholar
37Williams, D.B., Carter, C.B.: Transmission Electron Microscopy Plenum New York 1996CrossRefGoogle Scholar
38Goldstein, J.I.: Principles of thin film x-ray microanalysis in Introduction to Analytical Electron Microscopy, edited by Plenum New York 1979 83Google Scholar
39Goldstein, J.I., Williams, D.B.: X-ray microanalysis for thin specimens in Quantitative Microanalysis with High Spatial Resolution, edited by G.W. Lorimer, M.H. Jacobs, and P. Doig The Metals Society, London 1981 5Google Scholar
40Goldstein, J.I., Costley, J.L., Lorimer, G.W., Reed, S.J.B.: Quantitative x-ray analysis in the electron microscope in Scanning Electron Microscopy 1977, Vol. 1 IIT Research Institute, Chicago 1977 315Google Scholar
41Huffman, M., Goral, J.P., Al-Jassim, M.M., Echer, C.: Structural and chemical-compositional investigation of thin lead zirconate titanate films. J. Vac. Sci. Technol., A 10, 1584 1992Google Scholar
42Sagalowicz, L., Muralt, P., Hiboux, S., Maeder, T., Brooks, K., Kighelamn, Z., Setter, N.: Stoichiometry and interdiffusion in PZT (Pb(Zr,Ti)O3) thin films studied by transmission electron microscopy (TEM) in Ferroelectric Thin Films VIII, edited by R.W. Schwartz, S.R. Summerfelt, P.C. McIntyre, Y. Miyasaka, and D. Wouters Mater. Res. Soc. Symp. Proc., 596 Warrendale, PA 2000 Y7.8 265Google Scholar
43Reaney, I., Barber, D.J.: Transmission electron microscopy of lead scandium tantalate thin-films. J. Microsc. 160, 213 1990Google Scholar