Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T12:51:04.685Z Has data issue: false hasContentIssue false

Photovoltaic spectroscopic study of GaN epilayers and InGaN quantum well structures

Published online by Cambridge University Press:  31 January 2011

W. Liu
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering, The National University of Singapore, Singapore 119260
M. F. Li
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering, The National University of Singapore, Singapore 119260
K. L. Teo
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering, The National University of Singapore, Singapore 119260
Nakao Akutsu
Affiliation:
Nippon Sanso Co., Tsukuba Laboratories, 10 Ohkubo Tsukuba, Ibaraki, 300-26, Japan
Koh Matsumoto
Affiliation:
Nippon Sanso Co., Tsukuba Laboratories, 10 Ohkubo Tsukuba, Ibaraki, 300-26, Japan
Get access

Abstract

Room-temperature photovoltaic spectroscopy was applied to study undoped GaN, n-type GaN, and InGaN quantum well structures. Clear exciton absorption was observed in the photovoltaic spectra of the undoped GaN, and polarization measurements were made to identify the exciton absorption. For the n-type GaN sample, instead of the exciton absorption we observed only bulk absorption edge, which may be due to the free carrier screening effect. For the InGaN quantum well structures, the photovoltaic spectra showed relatively complicated line shape due to the overlap of the signals from different layers. By changing the reference phase of the lock-in amplifier, we were able to suppress some of the signals and thus identify the origin of the corresponding signal.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).CrossRefGoogle Scholar
2.Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).CrossRefGoogle Scholar
3.Mohammad, S.N., Salvador, Arnel A., and Morkoc, H., Proc. IEEE 83, 1306 (1995).CrossRefGoogle Scholar
4.Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 34, L1331 (1995).Google Scholar
5.Nakamura, S., Solid State Commun. 102, 237 (1997).CrossRefGoogle Scholar
6.Burm, J., Schaff, W.J., Eastman, L.F., Amano, H., and Akasaki, I., Appl. Phys. Lett. 68, 2849 (1996).CrossRefGoogle Scholar
7.Chen, G.D., Smith, M., Lin, J.Y., Jiang, H.X., Wei, S-H., Asif Kan, M., and Sun, C.J., Appl. Phys. Lett. 68, 2784 (1996).CrossRefGoogle Scholar
8.Yeo, Y.C., Chong, T.C., and Li, M.F., J. Appl. Phys. 83, 1429 (1998).CrossRefGoogle Scholar
9.Shan, W., Schmidt, T.J., Hauenstein, R.J., Song, J.J., and Goldenberg, B., Appl. Phys. Lett. 66, 3492 (1995).CrossRefGoogle Scholar
10.Choa, F.S., Fan, J.Y., Liu, P.L., Sipior, J., Rao, G., Carter, G.M., and Chen, Y.J., Appl. Phys. Lett. 69, 3668 (1996).CrossRefGoogle Scholar
11.Reynolds, D.C., Look, D.C., Kim, W., Aktas, O., Botcharev, A., Salvador, A., Morkoc, H., and Talwar, D.N., J. Appl. Phys. 80, 594 (1996).CrossRefGoogle Scholar
12.Tchounkeu, M., Briot, O., Gil, B., Alexis, J.P., and Aulombard, R.L., J. Appl. Phys. 80, 5352 (1996).CrossRefGoogle Scholar
13.Binet, F., Duboz, J.Y., Rosencher, E., Scholz, F., and Harle, V., Phys. Rev. B 54, 8116 (1996).CrossRefGoogle Scholar
14.Shikanai, A., Azuhata, T., Sota, T., Chichibu, S., Kuramata, A., Horino, K., and Nakamura, S., J. Appl. Phys. 81, 417 (1997).CrossRefGoogle Scholar
15.Liu, W., Li, M.F., Chua, S.J., Zhang, Y.H., and Uchida, K., Appl. Phys. Lett. 71, 2511 (1997).CrossRefGoogle Scholar
16.Sterge, M.D., Phys. Rev. 127, 68 (1962).Google Scholar
17.Merz, C., Kunzer, M., Kaufmann, U., Akasaki, I., and Amano, H., Semicond. Sci. Technol. 11, 712 (1996).CrossRefGoogle Scholar
18.Volm, D., Oettinger, K., Streibl, T., Kovalev, D., Ben-Chorin, M., Diener, J., Meyer, B.K., Majewski, J., Eckey, L., Hoffmann, A., Amano, H., Akasaki, I., Hiramatsu, K., and Detchprohm, T., Phys. Rev. B 53, 16543 (1996).CrossRefGoogle Scholar
19.Dingle, R., Sell, D.D., Stokowski, S.E., Dean, P.J., and Zetterstrom, R.B., Phys. Rev. B 3, 497 (1971).CrossRefGoogle Scholar
20.Hopfield, J.J., J. Phys. Chem. Solids 15, 97 (1960).CrossRefGoogle Scholar
21.Chichibu, S., Azuhata, T., Sota, T., Amano, H., and Akasaki, I., Appl. Phys. Lett. 70, 2085 (1997).CrossRefGoogle Scholar
22.Haug, H. and Koch, S.W., Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990), p. 148.CrossRefGoogle Scholar
23.Tyan, S.L., Wang, Y.C., Hwang, J.S., and Shen, H., Appl. Phys. Lett. 68, 3452 (1996).CrossRefGoogle Scholar
24.Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).CrossRefGoogle Scholar
25.O'Donnell, K.P., Breitkopf, T., Kalt, H., Van der Stricht, W., Moerman, I., Dimeester, P., and Middleton, P.G., Appl. Phys. Lett. 70, 1843 (1997).CrossRefGoogle Scholar