Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T01:30:23.425Z Has data issue: false hasContentIssue false

Phase transformation in relaxor-ferroelectric single crystal [Pb(Sc1/2Nb1/2)O3]0.58–[PbTiO3]0.42

Published online by Cambridge University Press:  12 May 2014

Shanmugam Velu Rajasekaran
Affiliation:
Department of Physics, Govt. Arts College, Dharmapuri, India 636705
Srungarpu Nagabhusan Achary*
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085
Sadequa J. Patwe
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India 400085
Ramasamy Jayavel
Affiliation:
Crystal Growth Centre, Anna University, Chennai, India 600025
Garamilla Mangamma
Affiliation:
Surface and Nanoscience division, Materials Science group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Ashok Kumar Tyagi
Affiliation:
Surface and Nanoscience division, Materials Science group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structure and phase transition behavior of monoclinic phase of the morphotropic phase boundary composition Pb(Sc1/2Nb1/2)O3]0.58 –[PbTiO3]0.42 (PSN–42PT) in lead scandium niobate–lead titanate (PSN–PT) system have been investigated by in situ high-temperature polarized light microscopy (PLM) and x-ray diffraction (XRD) studies. Temperature-dependent powder XRD studies of PSN–42PT indicated monoclinic structure at 25 °C and cubic structure at 400 °C. It is observed that the room temperature monoclinic structure transforms to cubic structure through an intermediate tetragonal structure. The temperature-induced domain changes at the phase transition are investigated on (001) face of unpoled PSN–42PT crystal while heating as well as cooling the crystal on hot stage of the PLM. Under crossed polar condition, the striplike polar domains observed at lower temperature vanish gradually with increasing temperature. In the vicinity of ferroelectric transition temperature, the mesosize domains that appeared in the variable temperature PLM images are in accordance with the monoclinic–tetragonal–cubic transition sequence concluded by in situ high-temperature XRD studies. The domain rotation corresponding to the structural transformation sequence is concluded for the first time in the PSN–42PT.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, S-E. and Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).Google Scholar
Park, S-E. and Hackenberger, W.: High performance single crystal piezoelectrics: applications and issues. Curr. Opin. Solid State Mater. Sci. 6, 11 (2002).Google Scholar
Davis, M., Damjanvoic, D., and Setter, N.: Electric field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys. Rev. B 73, 014115 (2006).Google Scholar
Haumont, R., Al-Barakaty, A., Dkhil, B., Kiat, J.M., and Bellaiche, L.: Morphotropic phase boundary of heterovalent perovskite solid solutions: Experimental and theoretical investigation of PbSc1/2Nb1/2O3–PbTiO3 . Phys. Rev. B 71, 104106 (2005).Google Scholar
Xu, G., Luo, H., Xu, H., and Yin, Z.: Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition. Phys. Rev. B 64, 020102 (2001).Google Scholar
Cox, D.E., Noheda, B., Shirane, G., Uesu, Y., Fujishiro, K., and Yamada, Y.: Universal phase diagram for high-piezoelectric perovskite systems. Appl. Phys. Lett. 79, 400 (2001).Google Scholar
Ye, Z-G., Noheda, B., Dong, M., Cox, D.E., and Shirane, G.: Monoclinic phase in the relaxor-based piezoelectric-ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 system. Phys. Rev. B 64, 184114 (2001).Google Scholar
Yamashita, Y. and Harada, K.: Crystal growth and electrical properties of lead scandium niobate-lead titanate binary single crystals. Jpn. J. Appl. Phys. 36, 6039 (1997).Google Scholar
Bormanis, K., Burkhanov, A.I., Shil'nikov, A.V., Sternberg, A., Satarov, S.A., and Kalvane, A.: Features of dielectric polarisation in the PSN–PT ferroelectric ceramics. J. Optoelectron. Adv. Mater. 6, 341 (2005).Google Scholar
Uesu, Y., Yamada, Y., Fujishiro, K., Tazawa, H., Enokido, S., Kiat, J-M., and Dikhil, B.: Structural and optical studies of development of the long range order in ferroelectric relaxor Pb(Zn1/3Nb2/3)O3/9%PbTiO3 . Ferroelectrics 217, 319 (1998).Google Scholar
Iwata, M., Araki, T., Maeda, M., Suzuki, I., Ohwa, H., Yasuda, N., Orihara, H., and Ishibashi, Y.: Domain observation in Pb(Zn1/3Nb2/3)O3–PbTiO3 mixed crystals. Jpn. J. Appl. Phys. 41, 7003 (2002).Google Scholar
Ye, Z-G. and Dong, M.: Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals. J. Appl. Phys. 87, 2312 (2000).Google Scholar
Liu, S.F., Park, S.E., Shrout, T.R., and Cross, L.E.: Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3 − 0.045PbTiO3 single crystals. J. Appl. Phys. 85, 2810 (1999).Google Scholar
Ren, W., Liu, S.F., and Mukherjee, B.K.: Piezoelectric properties and phase transitions of 001-oriented Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals. Appl. Phys. Lett. 80, 3174 (2002).Google Scholar
Chien, R., Schmidt, V.H., Tu, C.S., Hung, L.W., and Luo, H.: Field-induced polarization rotation in (001)-cut Pb(Mg1/3Nb2/3)0.76Ti0.24O3 . Phys. Rev. B 69, 172101 (2004).Google Scholar
Schmidt, V.H., Chien, R., Shih, I.C., and Tu, C-S.: Polarization rotation and monoclinic phase in relaxor ferroelectric PMN–PT crystal. AIP Conf. Proc. 677, 160 (2003).Google Scholar
Tu, C-S., Chien, R.R., Wang, F-T., Schmidt, V.H., and Han, P.: Phase stability after an electric-field poling in Pb(Mg1/3Nb2/3)1−x Ti x O3 crystals. Phys. Rev. B 70, 220103 (2004).Google Scholar
Han, J. and Cao, W.: Electric field effects on the phase transitions in [001] oriented (1 − x) PbMg1/3Nb2/3O3x PbTiO3 single crystals with compositions near the morphotropic phase boundary. Phys. Rev. B 68, 134102 (2003).Google Scholar
Rajasekaran, S.V., Sivasubramanian, V., and Jayavel, R.: Raman spectroscopy of polar nano-regions in [Pb(Sc1/2Nb1/2)O3]0.58–[PbTiO3]0.42 single crystal. Jpn. J. Appl. Phys. 47, 6410 (2008).Google Scholar
Zeng, H.R., Yu, H.F., Hui, S.X., Li, G.R., Luo, H.S., and Yin, Q.R.: Depth profile dependence of domain configuration variations in Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Mater. Sci. Eng., B 127, 58 (2006).Google Scholar
Bai, F., Li, J., and Viehland, D.: Domain hierarchy in annealed (001)-oriented Pb(Mg1∕3Nb2∕3)O3x%PbTiO3 single crystals. Appl. Phys. Lett. 85, 2313 (2004).Google Scholar
Rajasekaran, S.V., Singh, A.K., and Jayavel, R.: Growth and morphological aspects of Pb[(Sc1/2Nb1/2)0.58Ti0.42]O3 single crystals by slow-cooling technique. J. Cryst. Growth 310, 1093 (2008).Google Scholar
Rodriguez-Carvajal, J.: Multi-pattern Rietveld refinement. Program. FullProf .2k, Version 3.30 (Laboratoire Lé on Brillouin, (CEA-CNRS) CEA/Saclay. France, 2005).Google Scholar
Singh, A.K. and Pandey, D.: Evidence for MB and MC phases in the morphotropic phase boundary region of (1 − x)PbMg1/3Nb2/3O3−x PbTiO3: A Rietveld study. Phys. Rev. B 67, 064102 (2003).Google Scholar
Corker, D.L., Glazer, A.M., Whatmore, R.W., Stallard, A., and Fauth, F.: A neutron diffraction investigation into the rhombohedral phases of the perovskite series PbZr1−x Ti x O3 . J. Phys.: Condens. Matter 10, 6251 (1998).Google Scholar
Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Li, J.F., and Viehland, D.: Conformal miniaturization of domains with low domain-wall energy: Monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91, 197601 (2003).Google Scholar
Noheda, B., Cox, D.E., and Shirane, G.: Phase diagram of the ferroelectric relaxor (1 − x)PbMg1/3Nb2/3O3xPbTiO3 . Phys. Rev. B 66, 054104 (2002).Google Scholar
Shvartsman, V.V. and Kholin, A.L.: Polar structures of PbMg1/3Nb2/3O3–PbTiO3 relaxors: Piezoresponse force microscopy approach. J. Adv. Dielect. 2, 1241003 (2012).Google Scholar
Balke, N., Bdikin, I., Kalinin, S.V., and Kholkin, A.L.: Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future. J. Am. Ceram. Soc. 92, 1629 (2009).Google Scholar
Chien, R.R., Tu, C-S., Schmidt, V.H., and Wang, F-T: Electric-field-induced and temperature-induced phase transitions in high-strain ferroelectric Pb(Mg1/3Nb2/3)0.67Ti0.33O3 single crystal. J. Phys.: Condens. Matter 18, 8337 (2006).Google Scholar
Bokov, A.A. and Ye, Z-G.: Domain structure in the monoclinic Pm phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J. Appl. Phys. 95, 6347 (2004).Google Scholar
Bokov, A.A., Long, X., and Ye, Z-G.: Optically isotropic and monoclinic ferroelectric phases in Pb(Zr1−x Ti x )O3 (PZT) single crystals near morphotropic phase boundary. Phys. Rev. B 81, 172103 (2010).Google Scholar
Supplementary material: File

Rajasekaran Supplementary Material

Supplementary Information

Download Rajasekaran Supplementary Material(File)
File 126 KB