Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T18:38:44.809Z Has data issue: false hasContentIssue false

Patterned substrate with inverted silicon pyramids for 3C–SiC epitaxial growth: A comparison with conventional (001) Si substrate

Published online by Cambridge University Press:  30 August 2012

Francesco La Via
Affiliation:
IMM-CNR, 95121, Catania, Italy
Giuseppe D’Arrigo
Affiliation:
IMM-CNR, 95121, Catania, Italy
Andrea Severino*
Affiliation:
IMM-CNR, 95121, Catania, Italy; and Epitaxial Technology Center, Contrada Torre Allegra, 95030, Catania, Italy
Nicolò Piluso
Affiliation:
IMM-CNR, 95121, Catania, Italy; and Epitaxial Technology Center, Contrada Torre Allegra, 95030, Catania, Italy
Marco Mauceri
Affiliation:
Epitaxial Technology Center, Contrada Torre Allegra, 95030, Catania, Italy
Christopher Locke
Affiliation:
Electrical Engineering Department, University of South Florida, Tampa, Florida 33620
Stephen E. Saddow
Affiliation:
Electrical Engineering Department, University of South Florida, Tampa, Florida 33620
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Development of 3C–SiC-based electronics is hampered by film quality and wafer bow produced during growth on silicon. This work presents an approach aimed to improve the compliance between Si and 3C–SiC by manipulating Si substrate surface with the creation of an array of squared-base Inverted Silicon Pyramids (ISP) and stimulating the annihilation of defects created at the interface. A reduction of stacking fault (SF) linear density to a value of 9.31 × 103 cm−1 has been observed in 9-μm-thick 3C–SiC film on ISP, stimulated by the ISP geometry with SFs forced to meet one another within the first micrometer of growth. The initial growth of 3C–SiC on ISP is described suggesting a peculiar growth mode leading to uniform sample morphology after about 3 μm of growth. Finally, lower residual stress stored in 3C–SiC/ISP samples has been observed, due to a faster stress relaxation mechanism during the film growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yun, J., Takahashi, T., Mitani, T., Ispida, Y., and Okumura, H.: Reductions of twin and protrusion in 3C-SiC heteroepitaxial growth on Si (100). J. Cryst. Growth 291, 148 (2006).Google Scholar
Ishida, Y., Takahashi, T., Okumura, H., Arai, K., and Yoshida, S.: Effect of reduced pressure on 3C-SiC heteroepitaxial growth on Si by CVD. Chem. Vap. Deposition 12, 495 (2006).Google Scholar
Severino, A. and La Via, F.: Microtwin reduction in 3C–SiC heteroepitaxy. Appl. Phys. Lett. 97, 181916 (2010).Google Scholar
Polychroniadis, E., Syvajarvi, M., Yakimova, R., and Stoemenos, J.: Microstructural characterization of very thick freestanding 3C-SiC wafers. J. Cryst. Growth 263, 68 (2004).CrossRefGoogle Scholar
Severino, A., Frewin, C., Bongiorno, C., Anzalone, R., Saddow, S.E., and La Via, F.: Structural defects in (100) 3C-SiC heteroepitaxy: Influence of the buffer layer morphology on generation and propagation of stacking faults and microtwins. Diamond Relat. Mater. 18, 1440 (2009).Google Scholar
Nagasawa, H., Yagi, K., Kawahara, T., Hatta, N., and Abe, M.: Hetero- and homo-epitaxial growth of 3C-SiC for MOS-FETs. Microelectron. Eng. 83, 185 (2006).Google Scholar
Nishino, S., Powell, J.A., and Hill, H.A.: Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Appl. Phys. Lett. 42(5), 460 (1983).Google Scholar
Reyes, M., Shishkin, Y., Harvey, S., and Saddow, S.E.: Development of a high-growth rate 3C-SiC on Si CVD process, in Silicon Carbide 2006—Materials, Processing and Devices, edited by Dudley, M., Capano, M.A., Kimoto, T., Powell, A.R., and Wang, S. (Mater. Res. Soc. Symp. Proc. 911, Warrendale, PA, 2006); p. 79.Google Scholar
Nishiguchi, T., Nakamura, M., Nishio, K., Isshiki, T., and Nishino, S.: Heteroepitaxial growth of (111) 3C–SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition. Appl. Phys. Lett. 84(16), 3082 (2004).Google Scholar
Severino, A., Camarda, M., Condorelli, G., Perdicaro, L.M.S., Anzalone, R., Mauceri, M., La Magna, A., and La Via, F.: Effect of the miscut direction in (111) 3C-SiC film growth on off-axis (111)Si. Appl. Phys. Lett. 94, 101907 (2009).Google Scholar
Severino, A., Bongiorno, C., Piluso, N., Italia, M., Camarda, M., Mauceri, M., Condorelli, G., Di Stefano, M.A., Cafra, B., La Magna, A., and La Via, F.: High-quality 6 inch (111) 3C-SiC films grown on off-axis (111) Si substrates. Thin Solid Films 518, S165 (2010).Google Scholar
Zielinski, M., Ndiaye, S., Chassagne, T., Juillaguet, S., Lewandowska, R., Portail, M., Leycuras, A., and Camassel, J.: Strain and wafer curvature of 3C-SiC films on silicon: Influence of the growth conditions. Phys. Status Solidi A 204, 981 (2007).CrossRefGoogle Scholar
Severino, A., D’Arrigo, G., Bongiorno, C., Scalese, S., Foti, G., and La Via, F.: Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates. J. Appl. Phys. 102, 023518 (2007).Google Scholar
Portail, M., Zielisnki, M., Chassagne, T., Roy, S., and Nemoz, M.: Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates. J. Appl. Phys. 105, 083505 (2009).Google Scholar
Zgheib, Ch., McNeil, L.E., Kazan, P., Masri, P., Morales, F.M., Ambacher, O., and Pezoldt, J.: Raman studies of Ge-promoted stress modulation in 3C–SiC grown on Si(111). Appl. Phys. Lett. 87, 041905 (2005).Google Scholar
Abe, Y., Komiyama, J., Suzuki, S., and Nakanishi, H.: SiC epitaxial growth on Si(0 0 1) substrates using a BP buffer layer. J. Cryst. Growth 283, 41 (2005).Google Scholar
Möller, H., Krötz, G., Eickhoff, M., Nielsen, A., Papaioannou, V., and Stoemenos, J.: Suppression of Si cavities at the SiC/Si interface during epitaxial growth of 3C-SiC on silicon-on-insulator. J. Electrochem. Soc. 148(1), G16 (2001).Google Scholar
Namavar, F., Colter, P.C., Planes, N., Fraisse, B., Pernot, J., Juillaguet, S., and Camassel, J.: Investigation of porous silicon as a new compliant substrate for 3C-SiC deposition. Mater. Sci. Eng., B 6162, 571 (1999).Google Scholar
Nagasawa, H., Yagi, K., and Kawahara, T.: 3C-SiC hetero-epitaxial growth on undulant Si(001) substrate. J. Cryst. Growth 237239, 1244 (2002).CrossRefGoogle Scholar
Nagasawa, H., Yagi, K., Kawahara, T., Hatta, N., Pensl, G., Choyke, W.J., Yamada, T., Itoh, K.M., and Schöner, A.: Low-defect 3C-SiC Grown on Undulant-Si (0 0 1) Substrates, in Silicon Carbide, Recent Major Results, edited by Choyke, W.J., Matsunami, H., and Pensl, G. (Springer, Berlin, 2004); p. 207.Google Scholar
Schöner, A., Krieger, M., Pensl, G., Abe, M., and Nagasawa, H.: Fabrication and characterization of 3C-SiC-based MOSFETs. Chem. Vap. Deposition 12, 523 (2006).Google Scholar
Nagasawa, H., Abe, M., Yagi, K., Kawahara, T., and Hatta, N.: Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects. Phys. Status Solidi B 245, 1272 (2008).Google Scholar
Nagasawa, H., Kawahara, T., Yagi, K., Hatta, N., Uccida, H., Kobayashi, M., Reshanov, S., Esteve, R., and Schoner, A.: High quality 3C-SiC substrate for MOSFET fabrication. Mater. Sci. Forum 711, 91 (2012).Google Scholar
D’Arrigo, G., Severino, A., Milazzo, G., Bongiorno, C., Piluso, N., Abbondanza, G., Mauceri, M., Condorelli, G., and La Via, F.: 3C-SiC heteroepitaxial growth on inverted silicon pyramids (ISP). Mater. Sci. Forum 645648, 135 (2011).Google Scholar
Anzalone, R., Severino, A., D’Arrigo, G., Bongiorno, C., Abbondanza, G., Foti, G., Saddow, S.E., and La Via, F.: Heteroepitaxy of 3C-SiC on different on-axis oriented silicon substrates. J. Appl. Phys. 105, 084910 (2009).Google Scholar
F. La Via and G. D’Arrigo: Semiconductor substrate suitable for the realization of electronic and/or optoelectronic devices and relative manufacturing process. EU Application No. 08720195.0 – Patent No. 2203 PCT/IT2008000025, Patent Applicant: CNR, Italy.Google Scholar
Wagner, G., Schmidbauer, M., Irmscher, K., Tanner, P., and Fornari, R.: Influence of growth parameters on the residual strain in 3C-SiC epitaxial layers on (001) silicon. Mater. Sci. Forum 615617, 165 (2009).Google Scholar
Anzalone, R., Locke, C., Carballo, J., Piluso, N., Severino, A., D’Arrigo, G., Volinski, A.A., La Via, F., and Saddow, S.E.: Growth rate effect on 3C-SiC film residual stress on (100) Si substrates. Mater. Sci. Forum 645648, 143 (2010).Google Scholar
Zhu, W.L., Zhu, J.L., Nishino, S., and Pezzetti, G.: Spatially resolved Raman spectroscopy evaluation of residual stresses in 3C-SiC layer deposited on Si substrates with different crystallographic orientations. Appl. Surf. Sci. 252, 2346 (2006).Google Scholar
Huang, S. and Zhang, X.: Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications. J. Micromech. Microeng. 16, 382 (2006).Google Scholar
Feng, Z.C., Choyke, W.J., and Powell, J.A.: Raman determination of layer stresses and strains for heterostructures and its application to the cubic SiC/Si system. J. Appl. Phys. 64, 6827 (1988).Google Scholar
Anzalone, R., D’Arrigo, G., Camarda, M., Locke, C., Saddow, S.E., and La Via, F.: Advanced residual stress analysis and FEM simulation on heteroepitaxial 3C–SiC for MEMS application. J. Microelectromech. Syst. 20(3), 745 (2011).Google Scholar
Nagasawa, H., Yagi, K., Kawahara, T., and Hatta, N.: Reducing planar defects in 3C-SiC. Chem. Vap. Deposition 12, 502 (2006).Google Scholar
Zielinski, M., Leycuras, A., Ndiaye, S., and Chassagne, T.: Stress relaxation during the growth of 3C-SiC/Si thin films. Appl. Phys. Lett. 89, 131906 (2006).Google Scholar
Watts, B.E., Attolini, G., Besagni, T., Bosi, M., Ferrari, C., Rossi, F., Riesz, F., and Jiang, L.: Evaluation of curvature and stress in 3C-SiC grown on differently oriented Si substrates. Mater. Sci. Forum 679680, 137 (2011).Google Scholar
Camarda, M., Anzalone, R., Piluso, N., Severino, A., Canino, A., La Via, F., and La Magna, A.: Extended characterization of the stress fields in the heteroepitaxial growth of 3C-SiC on Si for sensors and device applications. Mater. Sci. Forum 717720, 517 (2012).Google Scholar
Zielinski, M., Michaud, J.F., Jiao, S., Chassagne, T., Bazin, A.E., Michon, A., Portail, M., and Alquier, D.: Experimental observation and analytical model of the stress gradient inversion in 3C-SiC layers on silicon. J. Appl. Phys. 111, 053507 (2012).Google Scholar