Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T19:48:18.878Z Has data issue: false hasContentIssue false

Optical properties of defects in nitride semiconductors

Published online by Cambridge University Press:  23 September 2015

Ingo Tischer*
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany; and Richter lighting technologies GmbH, 73540 Heubach, Germany
Matthias Hocker
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany
Benjamin Neuschl
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany
Manfred Madel
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany; and UMS GmbH, 89081 Ulm, Germany
Martin Feneberg
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany; and Otto von Guericke University, 39106 Magdeburg, Germany
Martin Schirra
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany; and Hochschule Kempten, 87435 Kempten, Germany
Manuel Frey
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany; and U-L-M Photonics, 89081Ulm, Germany
Manuel Knab
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany
Pascal Maier
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany
Thomas Wunderer
Affiliation:
Institute of Optoelectronics, University of Ulm, 89081 Ulm, Germany; and Palo Alto Research Center, Palo Alto, California 94304, USA
Robert A.R. Leute
Affiliation:
Institute of Optoelectronics, University of Ulm, 89081 Ulm, Germany; and Automotive Lighting, 72762Reutlingen, Germany
Junjun Wang
Affiliation:
Institute of Optoelectronics, University of Ulm, 89081 Ulm, Germany
Ferdinand Scholz
Affiliation:
Institute of Optoelectronics, University of Ulm, 89081 Ulm, Germany
Johannes Biskupek
Affiliation:
Electron Microscopy Group of Materials Science, University of Ulm, 89069 Ulm, Germany
Jörg Bernhard
Affiliation:
Electron Microscopy Group of Materials Science, University of Ulm, 89069 Ulm, Germany
Ute Kaiser
Affiliation:
Electron Microscopy Group of Materials Science, University of Ulm, 89069 Ulm, Germany
Ulrich Simon
Affiliation:
Scientific Computing Centre Ulm, University of Ulm, 89081 Ulm, Germany
Levin Dieterle
Affiliation:
Institute of Electron Microscopy, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany; and VEGA Grieshaber KG, 77761 Schiltach, Germany
Heiko Groiss
Affiliation:
Institute of Electron Microscopy, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany; and Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040 Linz, Austria
Erich Müller
Affiliation:
Institute of Electron Microscopy, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
Dagmar Gerthsen
Affiliation:
Institute of Electron Microscopy, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
Klaus Thonke
Affiliation:
Institute of Quantum Matter, Semiconductor Physics Group, University of Ulm, 89081 Ulm, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Group III nitrides are promising materials for light emitting diodes (LEDs). The occurrence of structural defects strongly affects the efficiency of these LEDs. We investigate the optical properties of basal plane stacking faults (BFSs), and the assignment of specific spectral features to distinct defect types by direct correlation of localized emission bands measured by cathodoluminescence in a scanning electron microscope with defects found in high resolution (scanning) transmission electron microscopy and electron beam induced current at identical sample spots. Thus, we are able to model the electronic structure of BSFs addressing I1, I2, and E type BSFs in GaN and AlGaN with low Al content. We find hints that BSFs in semipolar AlGaN layers cause local changes of the Al content, which strongly affects the usability of AlGaN as an electron blocking layer in nitride based LEDs.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schlotter, P., Schmidt, R., and Schneider, J.: Luminescence conversion of blue light emitting diode. Appl. Phys. A 64, 417 (1997).CrossRefGoogle Scholar
Raukas, M., Kelso, J., Zheng, Y., Bergenek, K., Eisert, D., Linkov, A., and Jermann, F.: Ceramic Phosphors for Light Conversion in LEDs. ECS J. Solid State Sci. Technol. 2, R3168 (2013).Google Scholar
Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S.: High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
Kim, M-H., Schubert, M.F., Dai, Q., Kim, J.K., Schubert, E.F., Piprek, J., and Park, Y.: Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007).CrossRefGoogle Scholar
Shen, Y.C., Mueller, G.O., Watanabe, S., Gardner, N.F., Munkholm, A., and Krames, M.R.: Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007).CrossRefGoogle Scholar
Piprek, J.: Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207, 2217 (2010).CrossRefGoogle Scholar
Iveland, J., Martinelli, L., Peretti, J., Speck, J.S., and Weisbuch, C.: Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop. Phys. Rev. Lett. 110, 177406 (2013).CrossRefGoogle ScholarPubMed
Piprek, J. and Simon Li, Z.M.: Origin of InGaN light-emitting diode efficiency improvements using chirped AlGaN multi-quantum barriers. Appl. Phys. Lett. 102, 023510 (2013).CrossRefGoogle Scholar
Binder, M., Nirschl, A., Zeisel, R., Hager, T., Lugauer, H-J., Sabathil, M., Bougeard, D., Wagner, J., and Galler, B.: Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence. Appl. Phys. Lett. 103, 071108 (2013).Google Scholar
Bertazzi, F., Goano, M., Zhou, X., Calciati, M., Ghione, G., Matsubara, M., and Bellotti, E.: Looking for Auger signatures in III-nitride light emitters: A full-band Monte Carlo perspective. Appl. Phys. Lett. 106, 061112 (2015).CrossRefGoogle Scholar
Kozodoy, P., Ibbetson, J.P., Marchand, H., Fini, P.T., Keller, S., Speck, J.S., DenBaars, S.P., and Mishra, U.K.: Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998).CrossRefGoogle Scholar
Hsu, J.W.P., Manfra, M.J., Lang, D.V., Richter, S., Chu, S.N.G., Sergent, A.M., Kleiman, R.N., Pfeiffer, L.N., and Molnar, R.J.: Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl. Phys. Lett. 78, 1685 (2001).Google Scholar
Hsu, J.W.P., Manfra, M.J., Chu, S.N.G., Chen, C.H., Pfeiffer, L.N., and Molnar, R.J.: Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy. Appl. Phys. Lett. 78, 3980 (2001).CrossRefGoogle Scholar
Miller, E.J., Dang, X.Z., and Yu, E.T.: Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J. Appl. Phys. 88, 5951 (2000).CrossRefGoogle Scholar
McCarthy, L., Smorchkova, I., Xing, H., Fini, P., Keller, S., Speck, J., DenBaars, S.P., Rodwell, M.J.W., and Mishra, U.K.: Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors. Appl. Phys. Lett. 78, 2235 (2001).Google Scholar
Ganguly, S., Verma, J., Hu, Z., Xing, H.G., and Jena, D.: Performance enhancement of InAlN/GaN HEMTs by KOH surface treatment. Appl. Phys. Express 7, 034102 (2014).Google Scholar
Hafiz, S., Zhang, F., Monavarian, M., Okur, S., Avrutin, V., Morkoç, H., and Özgür, U.: Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements. In Proceedings of the International Society of Optical Engineering, Vol. 9003; SPIE, Bellingham, WA, 2014; p. 90031R.Google Scholar
Yokoyama, T., Kamimura, Y., Edagawa, K., and Yonenaga, I.: Local current conduction due to edge dislocations in deformed GaN studied by scanning spreading resistance microscopy. Eur. Phys. J.: Appl. Phys. 61, 10102 (2013).Google Scholar
Drum, C.M.: Intersecting faults on basal and prismatic planes in aluminium nitride. Philos. Mag. 11, 313 (1965).Google Scholar
Zakharov, D.N., Liliental-Weber, Z., Wagner, B., Reitmeier, Z.J., Preble, E.A., and Davis, R.F.: Structural TEM study of nonpolar a-plane gallium nitride grown on ($11\overline{2}0$) 4H-SiC by organometallic vapor phase epitaxy. Phys. Rev. B 71, 235334 (2005).Google Scholar
Ramírez-Flores, G., Navarro-Contreras, H., Lastras-Martínez, A., Powell, R.C., and Greene, J.E.: Temperature-dependent optical band gap of the metastable zinc-blende structure -GaN. Phys. Rev. B 50, 8433 (1994).Google Scholar
Monemar, B.: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 10, 676 (1974).CrossRefGoogle Scholar
Rebane, Y.T., Shreter, Y.G., and Albrecht, M.: Stacking Faults as Quantum Wells for Excitons in Wurtzite GaN. Phys. Status Solidi A 164, 141 (1997).Google Scholar
Albrecht, M., Christiansen, S., Salviati, G., Zanotti-Fregonara, C., Rebane, Y.T., Shreter, Y.G., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K.J., Bremser, M.D., Davis, R.F., and Strunk, H.P.: Luminescence Related to Stacking Faults in Heterepitaxially Grown Wurtzite GaN. MRS Online Proc. Libr. 468, 293 (1997).Google Scholar
Bandić, Z., McGill, T., and Ikonić, Z.: Electronic structure of GaN stacking faults. Phys. Rev. B 56, 3564 (1997).Google Scholar
Tischer, I., Feneberg, M., Schirra, M., Yacoub, H., Sauer, R., Thonke, K., Wunderer, T., Scholz, F., Dieterle, L., Müller, E., and Gerthsen, D.: I 2 basal plane stacking fault in GaN: Origin of the 3.32 eV luminescence band. Phys. Rev. B 83, 035314 (2011).CrossRefGoogle Scholar
Sun, Y.J., Brandt, O., Jahn, U., Liu, T.Y., Trampert, A., Cronenberg, S., Dhar, S., and Ploog, K.H.: Impact of nucleation conditions on the structural and optical properties of M-plane ${G}a{N}(1\bar{1}00)$ grown on $\gamma-\mathrm{{L}i{A}l{O}}_2$. J. Appl. Phys. 92, 5714 (2002).Google Scholar
Skromme, B., Chen, L., Mikhov, M., Yamane, H., Aoki, M., and DiSalvo, F.: Properties of the 3.4 eV Luminescence Band in GaN and its Relation to Stacking Faults. Mater. Sci. Forum 457, 1613 (2004).Google Scholar
Liu, R., Bell, A., Ponce, F.A., Chen, C.Q., Yang, J.W., and Khan, M.A.: Luminescence from stacking faults in gallium nitride. Appl. Phys. Lett. 86, 021908 (2005).Google Scholar
Lähnemann, J., Brandt, O., Jahn, U., Pfüller, C., Roder, C., Dogan, P., Grosse, F., Belabbes, A., Bechstedt, F., Trampert, A., and Geelhaar, L.: Direct experimental determination of the spontaneous polarization of GaN. Phys. Rev. B 86, 081302 (2012).CrossRefGoogle Scholar
Lähnemann, J., Jahn, U., Brandt, O., Flissikowski, T., Dogan, P., and Grahn, H.T.: Luminescence associated with stacking faults in GaN. J. Phys. D: Appl. Phys. 47, 423001 (2014).CrossRefGoogle Scholar
Jacopin, G., Rigutti, L., Largeau, L., Fortuna, F., Furtmayr, F., Julien, F.H., Eickhoff, M., and Tchernycheva, M.: Optical properties of wurtzite/zinc-blende heterostructures in GaN nanowires. J. Appl. Phys. 110, 064313 (2011).CrossRefGoogle Scholar
Piprek, J. and Nakamura, S.: Physics of high-power InGaN/GaN lasers. IEE Proc.: Optoelectron. 4, 145 (2002).Google Scholar
Van der Maelen Uría, J.F., García-Granda, S., and Menéndez-Velázquez, A.: Solving one-dimensional Schrödinger-like equations using a numerical matrix method. Am. J. Phys. 64, 327 (1996).Google Scholar
Scholz, F., Schwaiger, S., Däubler, J., Tischer, I., Thonke, K., Neugebauer, S., Metzner, S., Bertram, F., Christen, J., Lengner, H., Thalmair, J., and Zweck, J.: Semipolar GaInN quantum well structures on large area substrates. Phys. Status Solidi B 249, 464 (2012).Google Scholar
Darakchieva, V., Monemar, B., and Usui, A.: On the lattice parameters of GaN. Appl. Phys. Lett. 91, 031911 (2007).CrossRefGoogle Scholar
Paszkowicz, W., Podsiadło, S., and Minikayev, R.: Rietveld-refinement study of aluminium and gallium nitrides. J. Alloys Compd. 382, 100 (2004). Proceedings of the European Materials Research Society Fall Meeting, Symposium B.Google Scholar
Vurgaftman, I. and Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003).CrossRefGoogle Scholar
Bernardini, F., Fiorentini, V., and Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024 (1997).Google Scholar
Feneberg, M., Lange, K., Lidig, C., Wieneke, M., Witte, H., Bläsing, J., Dadgar, A., Krost, A., and Goldhahn, R.: Anisotropic absorption and emission of bulk ($1\overline{1}00$) AlN. Appl. Phys. Lett. 103, 232104 (2013).Google Scholar
de Carvalho, L.C., Schleife, A., and Bechstedt, F.: Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN. Phys. Rev. B 84, 195105 (2011).CrossRefGoogle Scholar
Im, J.S., Moritz, A., Steuber, F., Härle, V., Scholz, F., and Hangleiter, A.: Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl. Phys. Lett. 70, 631 (1997).Google Scholar
Azuhata, T., Sota, T., Suzuki, K., and Nakamura, S.: Polarized Raman spectra in GaN. J. Phys.: Condens. Matter 7, L129 (1995).Google Scholar
Feneberg, M., Romero, M.F., Röppischer, M., Cobet, C., Esser, N., Neuschl, B., Thonke, K., Bickermann, M., and Goldhahn, R.: Anisotropic absorption and emission of bulk ($1\overline{1}00$) AlN. Phys. Rev. B 87, 235209 (2013b).Google Scholar
Neuschl, B., Helbing, J., Knab, M., Lauer, H., Madel, M., Thonke, K., Meisch, T., Forghani, K., Scholz, F., and Feneberg, M.: Composition dependent valence band order in c-oriented wurtzite AlGaN layers. J. Appl. Phys. 116, 113506 (2014).CrossRefGoogle Scholar
Feneberg, M., Röppischer, M., Cobet, C., Esser, N., Schörmann, J., Schupp, T., As, D.J., Hörich, F., Bläsing, J., Krost, A., and Goldhahn, R.: Optical properties of cubic GaN from 1 to 20 eV. Phys. Rev. B 85, 155207 (2012).Google Scholar
Röppischer, M., Goldhahn, R., Rossbach, G., Schley, P., Cobet, C., Esser, N., Schupp, T., Lischka, K., and As, D.J.: Dielectric function of zinc-blende AlN from 1 to 20 eV: Band gap and van Hove singularities. J. Appl. Phys. 106, 076104 (2009).Google Scholar
Bougrov, V., Levinshtein, M.E., Rumyantsev, S.L., and Zubrilov, A.: Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; Levinshtein, M.E., Rumyantsev, S.L., and Shur, M. eds.; John Wiley & Sons, New York, 2001.Google Scholar
Suzuki, T., Yaguchi, H., Okumura, H., Ishida, Y., and Yoshida, S.: Optical Constants of Cubic GaN, AlN, and AlGaN Alloys. Jpn. J. Appl. Phys. 39, L497 (2000).Google Scholar
Wunderer, T., Hertkorn, J., Lipski, F., Brückner, P., Feneberg, M., Schirra, M., Thonke, K., Knoke, I., Meissner, E., Chuvilin, A., Kaiser, U., and Scholz, F.: Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets. Proc. SPIE 6894, 68940V (2008).Google Scholar
Knab, M., Hocker, M., Felser, T., Tischer, I., Wang, J., Scholz, F., and Thonke, K.: EBIC investigations on polar and semipolar InGaN LED structures. Phys. Status Solidi B (2015). doi: 10.1002/pssb.201552284.Google Scholar
Tischer, I., Feneberg, M., Schirra, M., Yacoub, H., Sauer, R., Thonke, K., Wunderer, T., Scholz, F., Dieterle, L., Müller, E., and Gerthsen, D.: Stacking fault-related luminescence features in semi-polar GaN. Phys. Status Solidi B 248, 611 (2011).Google Scholar
Tischer, I., Frey, M., Hocker, M., Jerg, L., Madel, M., Neuschl, B., Thonke, K., Leute, R., Scholz, F., Groiss, H., Müller, E., and Gerthsen, D.: Basal plane stacking faults in semipolar AlGaN: Hints to Al redistribution. Phys. Status Solidi B 251, 2321 (2014).Google Scholar
Narita, T., Honda, Y., Yamaguchi, M., and Sawaki, N.: The surface diffusion of Ga species on an AlGaN facet structure in low pressure MOVPE. Phys. Status Solidi C 4, 2506 (2007).Google Scholar
Vegard, L.: Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17 (1921).Google Scholar