Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T09:04:10.389Z Has data issue: false hasContentIssue false

On the in situ study of Li ion transport in transmission electron microscope

Published online by Cambridge University Press:  26 November 2014

Nan Jiang*
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85297, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

For understanding the atomic processes involved, in situ observation at near-atomic spatial resolution is needed in the studies of lithium ion battery materials. We show that the Li transport and the lithiation of carbon atoms may be triggered by the electron beam in an electron microscope, together with simultaneous real-time monitoring of electron energy-loss spectroscopy to reveal the chemical state of the species. The local electric field induced in an electrolyte particle by an electron beam acts on Li ions, resulting in Li transport and reaction with carbons. This process closely mimics the charging process of an electrochemical battery charge cycle, without an external power supply. We find that the lithium transport occurs in the form of Li+.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tarascon, J.M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359367 (2011).CrossRefGoogle Scholar
Oudenhoven, J.F.M., Baggetto, L., and Notten, P.H.L.: All-solid-state lithium-ion microbatteries: A review of various three-dimensional concepts. Adv. Energy Mater. 1, 1033 (2011).Google Scholar
Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C., and O’Keefe, M.A.: Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2, 464 (2003).Google Scholar
Courtney, I.A. and Dahn, J.R.: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).Google Scholar
Sharma, N., Peterson, V.K., Elcombe, M.M., Avdeev, M., Studer, A.J., Blagojevic, N., Yusoff, R., and Kamarulzaman, N.: Structural changes in a commercial lithium-ion battery during electrochemical cycling: An in situ neutron diffraction study. J. Power Sources 185, 8258 (2010).Google Scholar
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H.Y., Qi, L., Kushima, A., and Li, J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 15151520 (2010).CrossRefGoogle ScholarPubMed
Li, X.H. and Huang, J.Y.: In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 4, 38443860 (2011).Google Scholar
Wang, C., Xu, W., Liu, J., Zhang, J., Saraf, L.V., Arey, B.W., Choi, D., Yang, Z., Xiao, J., Thevuthasan, S., and Baer, D.R.: In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett. 11, 18741880 (2011).CrossRefGoogle Scholar
Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., and Huang, J.Y.: Reversible nanopore formation in Ge nanowires during lithiation delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 39913997 (2011).Google Scholar
Gu, M., Li, Y., Li, X., Hu, S., Zhang, X., Xu, W., Thevuthasan, S., Baer, D.R., Zhang, J., Liu, J., and Wang, C.: In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 84398447 (2012).Google Scholar
Liu, X.H., Liu, Y., Kushima, A., Zhang, S., Zhu, T., Li, J., and Huang, J.Y.: In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722741 (2012).Google Scholar
Rana, K., Kucukayan-Dogu, G., Sen, H.S., Boothroyd, C., Gulseren, O., and Bengu, E.J.: Analysis of charge transfer for in situ Li intercalated carbon nanotubes. J. Phys. Chem. C 116, 11364 (2012).Google Scholar
Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., and Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).Google Scholar
Wang, C., Li, X., Wang, Z., Xu, W., Liu, J., Gao, F., Kovarik, L., Zhang, J., Howe, J., Burton, D.J., Liu, Z., Xiao, X., Thevuthasan, S., and Baer, D.R.: In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 12, 16241632 (2012).Google Scholar
Su, Q., Chang, L., Zhang, J., Du, G., and Xu, B.: In situ TEM observation of the electrochemical process of individual CeO2/graphene anode for lithium ion battery. J. Phys. Chem. C 117, 42924298 (2013).Google Scholar
Su, Q., Dong, Z., Zhang, J., Du, G., and Xu, B.: Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: Two reaction modes are revealed. Nanotechnology 24, 255705 (2013).Google Scholar
Zhong, L., Mitchell, R.R., Liu, Y., Gallant, B.M., Thompson, C.V., Huang, J.Y., Mao, S.X., and Shao-Horn, Y.: In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett. 13, 22092214 (2013).CrossRefGoogle ScholarPubMed
McDowell, M.T., Lee, S.W., Harris, J.T., Korgel, B.A., Wang, C., Nix, W.D., and Cui, Y.: In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758764 (2013).CrossRefGoogle ScholarPubMed
Wang, F., Graetz, J., Moreno, M.S., Ma, C., Wu, L., Volkov, V., and Zhu, Y.: Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano 5, 11901197 (2011).Google Scholar
Xie, J., Tu, F., Su, Q., Du, G., Zhang, S., Zhu, T., Cao, G., and Zhao, Z.: In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance. Nano Energy 5, 122131 (2014).CrossRefGoogle Scholar
Nakagawa, A., Kuwata, N., Matsuda, Y., and Kawamura, J.: Characterization of stable solid electrolyte lithium silicate for thin film lithium battery. J. Phys. Soc. Jpn. 79, 98101 (2010).CrossRefGoogle Scholar
Jiang, N.: Damage mechanisms in electron microscopy of insulating materials. J. Phys. D 46, 305502 (2013).Google Scholar
Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscopy (Plenum, New York, 1996).Google Scholar
Jiang, N. and Spence, J.C.H.: Core-hole effects on electron energy-loss spectroscopy of Li2O. Phys. Rev. B 69, 115112 (2004).Google Scholar
Cazaux, J.: Correlations between ionization radiation damage and charging effects in transmission electron microscopy. Ultramicroscopy 60, 411 (1995).CrossRefGoogle Scholar
Garvie, L.A.J., Rez, P., Alvarezb, J.R., and Buseck, P.P.: Interband transitions of crystalline and amorphous SiO2: An electron energy-loss spectroscopy (EELS) study of the low-loss region. Solid State Commun. 106, 303 (1998).Google Scholar
Duan, Y. and Parlinski, K.: Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture. Phys. Rev. B 84, 104113 (2011).Google Scholar
Jiang, N., Su, D., Spence, J.C.H., Zhou, S., and Qiu, J.: Volume plasmon of bismuth nanoparticles. Solid State Commun. 149, 111 (2009); and references therein.CrossRefGoogle Scholar
Claye, A. and Fischer, J.E.: Short-range order in disordered carbons: Where does the Li go? Electrochim. Acta 45, 107 (1999).Google Scholar
Sato, K., Noguchi, M., Demachi, A., Oki, N., and Endo, M.: A mechanism of lithium storage in disordered carbons. Science 264, 556 (1994).Google Scholar
Dahn, J.R., Zheng, T., Liu, Y., and Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 (1995).Google Scholar
Kganyago, K.R. and Ngoepe, P.E.: Structural and electronic properties of lithium intercalated graphite LiC6. Phys. Rev. B 68, 205111 (2003).CrossRefGoogle Scholar
Supplementary material: File

Jiang et al. supplementary material

Supplementary information

Download Jiang et al. supplementary material(File)
File 788.4 KB