Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T02:05:04.440Z Has data issue: false hasContentIssue false

On glass formation in rapidly solidified aluminum-based alloys

Published online by Cambridge University Press:  31 January 2011

Q. Li
Affiliation:
Physics Laboratory, H. C. rsted Institute, University of Copenhagen, DK-2100 Copenhagen , Denmark
E. Johnson
Affiliation:
Physics Laboratory, H. C. rsted Institute, University of Copenhagen, DK-2100 Copenhagen , Denmark
A. Johansen
Affiliation:
Physics Laboratory, H. C. rsted Institute, University of Copenhagen, DK-2100 Copenhagen , Denmark
L. Sarholt-Kristensen
Affiliation:
Physics Laboratory, H. C. rsted Institute, University of Copenhagen, DK-2100 Copenhagen , Denmark
Get access

Abstract

Thermodynamic properties of the melts of several Al–Y and Al–Fe–Y alloys are studied by means of calibrated differential thermal analysis. The results can be used to optimize process parameters of rapid solidification which are important for glass formation in the Al-based alloys. Close examinations of the melt-spun alloys show that the process parameters, particularly the temperature of the melts, will influence not only the amorphicity and the chemical short-range order but also the crystallization process of the glasses. A key point of glass formation in the Al-based alloys is found to be related to the content in the melts of a certain amount of the intermetallic compounds which are gradually dissolved in the premelted α Al matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1He, Y., Poon, S.J., and Shiflet, G.J., Science 241, 1640 (1988).CrossRefGoogle Scholar
2He, Y., Poon, S.J., and Shiflet, G.J., Scripta Metall. 22, 1813 (1988).CrossRefGoogle Scholar
3Inoue, A., Ohtera, K., Zhang, T., and Masumoto, T., Jpn. J. Appl. Phys. 27, L1583 (1988).Google Scholar
4Tsai, A. P., Inoue, A., and Masumoto, T., Metall. Trans. 19A, 1369 (1988).Google Scholar
5Inoue, A., Ohtera, K., Tsai, A. P., and Masumoto, T., Jpn. J. Appl. Phys. 27, L280, L479, and L736 (1988).Google Scholar
6Bechet, D., Regazzoni, G., and Dubois, J. M., Pour la Science 139, 30 (1989).Google Scholar
7Inoue, A., Ohtera, K., and Masumoto, T., Sci. Rep. Res. Inst., Tohoku Univ., 35A, 115 (1990) and references therein.Google Scholar
8Hsieh, H.Y., Toby, B.H., Egami, T., He, Y., Poon, S.J., and Shiflet, G.J., J. Mater. Res. 5, 2807 (1990).CrossRefGoogle Scholar
9Inoue, A., Matsumoto, N., and Masumoto, T., Mater. Trans., JIM 31, 493 (1990).Google Scholar
10Bechet, D. and Regazzoni, G., Mater. Sci. Eng. 134A, 1120 (1991).Google Scholar
11Cochrane, R. F., Schumacher, P., and Greer, A. L., Mater. Sci. Eng. 134A, 367 (1991).Google Scholar
12Davies, H. A., in Amorphous Metallic Alloys, edited by Luborsky, F. E. (Butterworths, London, 1983), p. 8.CrossRefGoogle Scholar
13Kabacoff, L.T., Wong, C.P., Guthrie, N.L., and Dallek, S., Mater. Sci. Eng. 134A, 1288 (1991).Google Scholar
14Dunlap, R.A., Yewondwossen, M.H., Srinivas, V., Christie, T.A., McHenry, M. E., and Lloyd, D.J., J. Phys.: Condens. Matter 2, 4315 (1990) .Google Scholar
15Massalski, T. B., Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1986), p. 182, p. 112.Google Scholar
16Gray, A. P., in Analytical Calorimetry, edited by Porter, R. F. and Johnson, J. M. (Plenum Press, New York, 1986), p. 209.Google Scholar
17Font, J., Munntasell, J., and Navarro, J., Thermochim. Acta 88, 432 (1985).CrossRefGoogle Scholar
18III, P.M. Anderson and Lord, A.E. Jr., J. Non-Cryst. Solids 37, 219 (1980) and references therein.Google Scholar
19Smithells, C. J., Metals Reference Book (Butterworths, London, 1967), p. 686.Google Scholar
20Gschneidner, K. A. Jr., and Calderwood, F. W., Bull. Alloy Phase Diagrams 9, 658 (1988).Google Scholar
21Dokko, W. and Batista, R.G., Metall. Trans. 11B, 511 (1980).Google Scholar
22Sommer, F., J. Non-Cryst. Solids 117/118, 505 (1990).Google Scholar
23Chen, H. S., Koskenmaki, D., and Chen, C.H., Phys. Rev. B 35, 3715 (1987).Google Scholar
24He, Y., Chen, H., Shiflet, G. J., and Poon, S. J., Philos. Mag. Lett. 61, 297 (1990).Google Scholar
25Li, Q., Johnson, E., Madsen, M.B., Johansen, A., and Sarholt-Kristensen, L., Philos. Mag. B (1992, in press).Google Scholar
26Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
27Allen, J. W., Wright, A. C., and Cornell, G.A.N., J. Non-Cryst. Solids 42, 509 (1980).CrossRefGoogle Scholar
28Giessen, B.C., in Rapidly Quenched Metals, edited by Masumoto, T. and Suzuki, K. (JIM, Sendai, 1982), p. 213.Google Scholar
29Dubois, J. M., Caer, G. Le, and Dehghan, K., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985), p. 197.CrossRefGoogle Scholar
30Ran, Q., Lukas, H.L., Effenberg, G., and Petzow, G., J. Less-Common. Met. 146, 213 (1989).CrossRefGoogle Scholar
31Dubey, K. S. and Ramachandrarao, P., Acta Metall. 32, 91 (1984).CrossRefGoogle Scholar
32Battezzati, L., Philos. Mag. 61B, 511 (1990).Google Scholar
33Gillessen, F. and Herlach, D.M., J. Non-Cryst. Solids 177/178, 555 (1990).Google Scholar
34Greer, A.L., Philos. Mag. 61B, 525 (1990).Google Scholar
35Li, Q., Ph.D. Thesis, University of Copenhagen, Copenhagen (1991).Google Scholar