Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T02:36:25.877Z Has data issue: false hasContentIssue false

Observations of Dislocations in Cu/Nb Nanolayer Composites After Deformation

Published online by Cambridge University Press:  31 January 2011

Y-C. Lu
Affiliation:
Center for Materials Science, Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Center for Materials Science, Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A. J. Griffin Jr
Affiliation:
Center for Materials Science, Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. A. Nastasi
Affiliation:
Center for Materials Science, Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. E. Mitchell
Affiliation:
Center for Materials Science, Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Dislocations have been observed in deformed Cu/Nb nanolayer composites of wavelength 17 and 7 nm. The dislocations thread through the Cu/Nb interfaces even though there is a change of Burgers vector. Conventional and high resolution transmission electron microscopy studies show that the in-plane bowing direction of these dislocations in the Cu layers is opposite to that in the Nb layers, so that the dislocations appear to zig-zag. These observations are explained by the presence of residual tensile stresses in Cu and residual compressive stresses in Nb, which make dislocations bow in opposite directions in the alternating layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Verhoeven, J. D., Downing, H. L., Chumbley, L. S., and Gibson, E. D., J. Appl. Phys. 65, 1293 (1989).CrossRefGoogle Scholar
2.Chiang, K. T., Kallenborn, K. J., Yuen, J. L., and Paton, N. E., Mater. Sci. Eng. A156, 85 (1992).CrossRefGoogle Scholar
3.Liu, P., Bahadur, S., and Verhoeven, J. D., Wear 166, 133 (1993).CrossRefGoogle Scholar
4.Foner, S., McNiff, E. J. Jr, Schwartz, B. B., and Roberge, R., Appl. Phys. Lett. 31, 853 (1977).CrossRefGoogle Scholar
5.Harbison, J. P. and Bevk, J., J. Appl. Phys. 48, 5180 (1977).CrossRefGoogle Scholar
6.Griffin, A. J. Jr, Embury, J. D., Hundley, M. F., Jervis, T. R., Kung, H. H., Scarborough, W. K., Walter, K. C., Wood, J., and Nastasi, M. A., in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T. D., Lairson, B. M., Clemens, B. M., and Shin, S-C., and Sato, K. (Mater. Res. Soc. Symp. Proc. 382, Pittsburgh, PA, 1995), p. 309.Google Scholar
7.Hall, E. O., Proc. Phys. Soc. B64, 747 (1951).CrossRefGoogle Scholar
8.Petch, N. J., J. Iron Steel 174, 25 (1953).Google Scholar
9.Koehler, J. S., Phys. Rev. B 2, 547 (1970).CrossRefGoogle Scholar
10.Nix, W. D., Metall. Trans. A20, 2217 (1989).CrossRefGoogle Scholar
11.Freund, L. B., MRS Bull. 17, 52 (1992).CrossRefGoogle Scholar
12.Mitchell, T. E. and Unal, O., J. Electron. Mater. 20, 723 (1991).CrossRefGoogle Scholar
13.Embury, J. D. and Hirth, J. P., Acta Metall. Mater. 42, 2051 (1994).CrossRefGoogle Scholar
14.Ke, M., Hackney, S. A., Milligan, W. W., and Aifantis, E. C., Nano-Struct. Mater. 5, 689 (1995).CrossRefGoogle Scholar
15.Josell, D. and Spaepen, F., Acta Metall. Mater. 41, 3017 (1993).CrossRefGoogle Scholar
16.Lu, Y-C., Kung, H. H., Griffin, A. J. Jr, Nastasi, M. A., and Mitchell, T. E., unpublished work.Google Scholar
17.Griffin, A. J. Jr, unpublished work.Google Scholar