Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T10:44:23.522Z Has data issue: false hasContentIssue false

Novel flame retardant epoxy/clay nanocomposites prepared with a pre-ground phosphorus-containing organoclay

Published online by Cambridge University Press:  31 January 2011

Y.W. Chen-Yang*
Affiliation:
Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li City, Taoyuan County 320, Taiwan, Republic of China
W.S. Wang
Affiliation:
Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li City, Taoyuan County 320, Taiwan, Republic of China
J.C. Tang
Affiliation:
Department of Cosmetic Science, Chin Min Institute of Technology, Tou-Fen Township, Miao-Li County 351, Taiwan, Republic of China
Y.W. Wu
Affiliation:
Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li City, Taoyuan County 320, Taiwan, Republic of China
H.S. Chen
Affiliation:
Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li City, Taoyuan County 320, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A series of novel epoxy/clay nanocomposites (EPOCg-x) were prepared with a selected epoxy resin and x wt% of a mechanically ground phosphorus-containing organoclay (POCg). The results of x-ray diffraction (XRD), Fourier transform infrared, and field emission scanning electron microscopy measurements showed that POCg was size-reduced, and its silicate layers were disordered by the grinding process. The results of XRD and transmission electron microscopy of the nanocomposites suggested that the POCg particles were well-dispersed in the epoxy matrix with a combination of intercalation and destruction platelet structures. The as-prepared nanocomposites remained thermally stable above 376 °C. Furthermore, the storage modulus in the glass state, surface hardness, char residue, and limiting oxygen index (LOI) of the as-prepared nanocomposite were all significantly increased with increasing the POCg content. The large increment of LOI, 10 units higher than that of neat epoxy, indicated that an extraordinary enhancement on flame retardancy was obtained from EPOCg-5.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, K., Chen, L., Kotaki, M.He, C.: Preparation, microstructure and thermal mechanical properties of epoxy/crude clay nanocomposites. Composites Part A 38, 192 2007CrossRefGoogle Scholar
2Mohan, T.P., Kumar, M.R.Velmurugan, R.: Thermal, mechanical and vibration characteristics of epoxy-clay nanocomposites. J. Mater. Sci. 41, 5915 2006CrossRefGoogle Scholar
3Jan, I-N., Lee, T-M., Chiou, K-C.Lin, J-J.: Comparisons of physical properties of intercalated and exfoliated clay/epoxy nanocomposites. Ind. Eng. Chem. Res. 44, 2086 2005CrossRefGoogle Scholar
4Ha, S.R., Ryu, S.H., Park, S.J.Rhee, K.Y.: Effect of clay surface modification and concentration on the tensile performance of clay/epoxy nanocomposites. Mater. Sci. Eng., A 448, 264 2007CrossRefGoogle Scholar
5Boukerrou, A., Duchet, J., Fellahi, S., Kaci, M.Sautereau, H.: Morphology and mechanical and viscoelastic properties of rubbery epoxy/organoclay montmorillonite nanocomposites. J. Appl. Polym. Sci. 103, 3547 2007CrossRefGoogle Scholar
6Ogasawara, T., Ishida, Y., Ishikawa, T., Aoki, T.Ogura, T.: Helium gas permeability of montmorillonite/epoxy nanocomposites. Composite Part A 37, 2236 2006CrossRefGoogle Scholar
7Triantafyllidis, K.S., LeBaron, P.C., Park, I.Pinnavaia, T.J.: Epoxy-clay fabric film composites with unprecedented oxygen-barrier properties. Chem. Mater. 18, 4393 2006CrossRefGoogle Scholar
8Kim, J-K., Hu, C., Woo, R.S.C.Sham, M-L.: Moisture barrier characteristics of organoclay–epoxy nanocomposites. Comp. Sci. Technol. 65, 805 2005CrossRefGoogle Scholar
9Camino, G., Tartaglione, G., Frache, A., Manferti, C.Costa, G.: Thermal and combustion behaviour of layered silicate-epoxy nanocomposites. Polym. Degrad. Stab. 90, 354 2005CrossRefGoogle Scholar
10Hussain, M., Varley, R.J., Mathys, Z., Cheng, Y.B.Simon, G.P.: Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. J. Appl. Polym. Sci. 91, 1233 2004CrossRefGoogle Scholar
11Hartwig, A., Pütz, D., Schartel, B., Bartholmai, M.Wendschuh-Josties, M.: Combustion behaviour of epoxide based nanocomposites with ammonium and phosphonium bentonites. Macromol. Chem. Phys. 204, 2247 2003CrossRefGoogle Scholar
12Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng., R 53, 73 2006CrossRefGoogle Scholar
13Zhu, L.Xanthos, M.: Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J. Appl. Polym. Sci. 93, 1891 2004CrossRefGoogle Scholar
14Pluta, M.: Melt compounding of polylactide/organoclay: Structure and properties of nanocomposites. J. Polym. Sci., Part. B: Polym. Phys. 44, 3392 2006CrossRefGoogle Scholar
15Gurmendi, U., Eguiazabal, J.I.Nazabal, J.: Structure and properties of nanocomposites with a poly(ethylene terephthalate) matrix. Macromol. Mater. Eng. 292, 169 2007CrossRefGoogle Scholar
16Chen-Yang, Y.W., Lee, Y.K., Chen, Y.T.Wu, J.C.: High improvement in the properties of exfoliated PU/clay nanocomposites by the alternative swelling process. Polymer 48, 2969 2007CrossRefGoogle Scholar
17Oh, T-K., Hassan, M., Beatty, C.El-Shall, H.: The effect of shear forces on the microstructure and mechanical properties of epoxy–clay nanocomposites. J. Appl. Polym. Sci. 100, 3465 2006CrossRefGoogle Scholar
18Lu, H.J., Zhang, B.Y.Chen, X.B.: Effect of external shearing force on exfoliation structure and properties of high-performance epoxy/clay nanocomposites. Trans. Nonferrous Met. Soc. China 15, 211 2005Google Scholar
19Yasmin, A., Luo, J.J., Abot, J.L.Daniel, I.M.: Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos. Sci. Technol. 66, 2415 2006CrossRefGoogle Scholar
20Zunjarrao, S.C., Sriraman, R.Singh, R.P.: Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites. J. Mater. Sci. 41, 2219 2006CrossRefGoogle Scholar
21Meng, J.Hu, X.: Synthesis and exfoliation of bismaleimide– organoclay nanocomposites. Polymer 45, 9011 2004CrossRefGoogle Scholar
22Dean, K., Krstina, J., Tian, W.Varley, R.J.: Effect of ultrasonic dispersion methods on thermal and mechanical properties of organoclay epoxy nanocomposites. Macromol. Mater. Eng. 292, 415 2007CrossRefGoogle Scholar
23Wang, K., Wang, L., Wu, J., Chen, L.He, C.: Preparation of highly exfoliated epoxy/clay nanocomposites by “slurry compounding”: Process and mechanisms. Langmuir 21, 3613 2005CrossRefGoogle ScholarPubMed
24Douat, C., Heitz, A., Paris, M., Martinez, J.Fehrentz, J-A.: Post-synthesis incorporation of a lipidic side chain into a peptide on solid support. J. Peptide Sci. 8, 601 2002CrossRefGoogle ScholarPubMed
25Lu, S.Y.Hamerton, I.: Recent development in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 27, 1661 2002CrossRefGoogle Scholar
26Ngo, T.D., Ton-That, M.T., Hoa, S.V.Cole, K.C.: Reinforcing effect of organoclay in rubbery and glassy epoxy resins, Part I: Dispersion and properties. J. Appl. Polym. Sci. 107, 1154 2008CrossRefGoogle Scholar
27Hrachová, J., Komadel, P.Fajnor, V.Š.: The effect of mechanical treatment on the structure of montmorillonite. Mater. Lett. 61, 3361 2007CrossRefGoogle Scholar
28Katti, K.S., Sikdar, D., Katti, D.R., Ghosh, P.Verma, D.: Molecular interactions in intercalated organically modified clay and clay–polycaprolactam nanocomposites: Experiments and modeling. Polymer 47, 403 2006CrossRefGoogle Scholar
29Walia, M.Singh, G.: Corrosion inhibition of pure nickel by some phosphonium compounds in acid medium. Surf. Eng. 21, 176 2005CrossRefGoogle Scholar
30Eckel, D.F., Balogh, M.P., Fasulo, P.D.Rodgers, W.R.: Assessing organo-clay dispersion in polymer nanocomposites. J. Appl. Polym. Sci. 93, 1110 2004CrossRefGoogle Scholar
31Morgan, A.B.Gilman, J.W.: Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and x-ray diffraction: A comparative study. J. Appl. Polym. Sci. 87, 1329 2003CrossRefGoogle Scholar
32Vermogen, A., Masenelli-Varlot, K., Se’gue’ la, R., Duchet-Rumeau, J., Boucard, S.Prele, P.: Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules 38, 9661 2005CrossRefGoogle Scholar
33Kinloch, A.J.Taylorj, A.C.: The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci. 41, 3271 2006CrossRefGoogle Scholar
34Akbari, B.Bagheri, R.: Deformation mechanism of epoxy/clay nanocomposite. Eur. Polym. J. 43, 782 2007CrossRefGoogle Scholar
35Liu, Y-L., Wang, Y-H.Chen, H-S.: Novel thermosetting resins based on 4-(N-maleimido)phenylglycidylether, 4(a)—Preparation and properties of polymer-clay nanocomposites. Macromol. Chem. Phys. 206, 600 2005CrossRefGoogle Scholar
36Schartel, B., Knoll, U., Hartwig, A.Pütz, D.: Phosphonium-modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo-phosphorus fire retardants. Polym. Adv. Technol. 17, 281 2006CrossRefGoogle Scholar
37Gu, A.Liang, G.: Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites. Polym. Degrad. Stab.. 80, 381 2003CrossRefGoogle Scholar
38Liu, Y-L., Hsiue, G-H., Chiu, Y-S., Jeng, R-J.Perng, L-H.: Phosphorus-containing epoxy for flame retardant. 1. Synthesis, thermal, and flame-retardant properties. J. Appl. Polym. Sci. 61, 613 19963.0.CO;2-O>CrossRefGoogle Scholar
39Ratna, D., Chakraborty, B.C., Dutta, H.Banthia, A.K.: Nanoreinforcement of flexible epoxy using layered silicate. Polym. Eng. Sci. 46, 1667 2006CrossRefGoogle Scholar