Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T04:58:10.954Z Has data issue: false hasContentIssue false

A new method for hardness determination from depth sensing indentation tests

Published online by Cambridge University Press:  31 January 2011

J. Gubicza
Affiliation:
Department of General Physics, Eötvös University, Budapest, H-1088 Múzeum krt. 6-8, Budapest, Hungary
A. Juhász
Affiliation:
Department of General Physics, Eötvös University, Budapest, H-1088 Múzeum krt. 6-8, Budapest, Hungary
J. Lendvai
Affiliation:
Department of General Physics, Eötvös University, Budapest, H-1088 Múzeum krt. 6-8, Budapest, Hungary
Get access

Abstract

A new semiempirical formula is developed for the hardness determination of the materials from depth sensing indentation tests. The indentation works measured both during loading and unloading periods are used in the evaluation. The values of the Meyer hardness calculated in this way agree well with those obtained by conventional optical observation, where this latter is possible. While the new hardness formula characterizes well the behavior of the conventional hardness number even for the ideally elastic material, the mean contact pressure generally used in hardness determination differs significantly from the conventional hardness number when the ideally elastic limiting case is being approached.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sakai, M., Acta Metall. Mater. 41, 1751 (1993).CrossRefGoogle Scholar
2.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).Google Scholar
3.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
4.Pharr, G.M. and Oliver, W.C., MRS Bull. 17, 28 (1992).CrossRefGoogle Scholar
5.Juhász, A., Vörös, G., Tasnádi, P., Kovács, I., Somogyi, I., and Szöllösi, J., Colloque C7, supplément au J. de Phys. 3, 1485 (1993).Google Scholar
6.Brotzen, F.R., Int. Mat. Rev. 39, 24 (1994).CrossRefGoogle Scholar
7.Juhász, A., Dimitrova-Lukács, M., Vörös, G., Gubicza, J., Tasnádi, P., Lukács, P., and Kele, A., Fortchrittsberichte der Deutschen Keramischen Gesellschaft 9, 87 (1994).Google Scholar
8.Gubicza, J., Key Eng. Mater. 103, 217 (1995).CrossRefGoogle Scholar
9.Gubicza, J., Juhász, A., Arató, P., Tasnádi, P., and Vörös, G., J. Mater. Sci. 31, 3109 (1996).CrossRefGoogle Scholar
10.Tabor, D., Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
11.Fröhlich, F., Grau, P., and Grellmann, W., Phys. Status Solidi (a) 42, 79 (1977).Google Scholar
12.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16, 2745 (1981).CrossRefGoogle Scholar
13.Sneddon, I.N., Int. J. Engng. Sci. 3, 47 (1965).Google Scholar