Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T07:04:07.046Z Has data issue: false hasContentIssue false

Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion

Published online by Cambridge University Press:  18 August 2015

Dong-Hyun Lee
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea
In-Chul Choi
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea
Moo-Young Seok
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea
Junyang He
Affiliation:
State Key Laboratory for Advance Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People's Republic of China
Zhaoping Lu
Affiliation:
State Key Laboratory for Advance Metals and Materials, University of Science and Technology Beijing, Beijing 10083, People's Republic of China
Jin-Yoo Suh
Affiliation:
High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
Megumi Kawasaki*
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea
Terence G. Langdon
Affiliation:
Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1453, USA; and Faculty of Engineering and the Environment, Materials Research Group, University of Southampton, Southampton SO17 1BJ, UK
Jae-il Jang*
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A CoCrFeNiMn high-entropy alloy (HEA), in the form of a face-centered cubic (fcc) solid solution, was processed by high-pressure torsion (HPT) to produce a nanocrystalline (nc) HEA. Significant grain refinement was achieved from the very early stage of HPT through 1/4 turn and an nc structure with an average grain size of ∼40 nm was successfully attained after 2 turns. The feasibility of significant microstructural changes was attributed to the occurrence of accelerated atomic diffusivity under the torsional stress during HPT. Nanoindentation experiments showed that the hardness increased significantly in the nc HEA during HPT processing and this was associated with additional grain refinement. The estimated values of the strain-rate sensitivity were maintained reasonably constant from the as-cast condition to the nc alloy after HPT through 2 turns, thereby demonstrating a preservation of plasticity in the HEA. In addition, a calculation of the activation volume suggested that the grain boundaries play an important role in the plastic deformation of the nc HEA where the flow mechanism is consistent with other nc metals. Transmission electron microscopy showed that, unlike conventional fcc nc metals, the nc HEA exhibits excellent microstructural stability under severe stress conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).CrossRefGoogle Scholar
Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).Google Scholar
Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).Google Scholar
He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).Google Scholar
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
Senkov, O.N., Scott, J., and Senkova, S.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).CrossRefGoogle Scholar
Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).Google Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).Google Scholar
Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526 (2013).Google Scholar
Wu, Y., Liu, W.H., Wang, X.L., Ma, D., Stoica, A.D., Nieh, T.G., He, Z.B., and Lu, Z.P.: In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl. Phys. Lett. 104, 051910 (2014).Google Scholar
Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G., and George, E.P.: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348 (2015).Google Scholar
Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).CrossRefGoogle Scholar
Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., Zherebtsov, S., Efimov, A., and Salishchev, G.: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8 (2015).CrossRefGoogle Scholar
Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).Google Scholar
Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).CrossRefGoogle ScholarPubMed
Meyer, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).Google Scholar
Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).Google Scholar
Zhu, T. and Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55, 710 (2010).Google Scholar
Choi, I-C., Kim, Y-J., Seok, M-Y., Yoo, B-G., Kim, J-Y., Wang, Y., and Jang, J-I.: Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses. Int. J. Plast. 41, 53 (2013).Google Scholar
Ma, Y., Peng, G.J., Wen, D.H., and Zhang, T.H.: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng., A 621, 111 (2015).Google Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, 31 (2009).Google Scholar
Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 10271030 (2010).CrossRefGoogle Scholar
Praveen, S., Murty, B.S., and Kottada Ravi, S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).Google Scholar
Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).Google Scholar
Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).Google Scholar
Langdon, T.G.: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).Google Scholar
Tang, Q.H., Huang, Y., Huang, Y.Y., Liao, X.Z., Langdon, T.G., and Dai, P.Q.: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126 (2015).Google Scholar
Zhilyaev, A.P., Kim, B.K., Nurislamova, G.V., Baró, M.D., Szpunar, J.A., and Langdon, T.G.: Orientation imaging microscopy of ultrafine-grained nickel. Scr. Mater. 46, 575 (2002).Google Scholar
Zhilyaev, A.P., Nurislamova, G.V., Kim, B.K., Baró, M.D., Szpunar, J.A., and Langdon, T.G.: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).Google Scholar
Wongsa-Ngam, J., Kawasaki, M., and Langdon, T.G.: A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J. Mater. Sci. 48, 4653 (2013).CrossRefGoogle Scholar
Valiev, R.Z., Ivanisenko, Y.V., Rauch, E.F., and Baudelet, B.: Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation. Acta Mater. 44, 4705 (1996).Google Scholar
Figueiredo, R.B., Cetlin, P.R., and Langdon, T.G.: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528, 8198 (2011).CrossRefGoogle Scholar
Figueiredo, R.B., Pereira, P.H.R., Aguilar, M.T.P., Cetlin, P.R., and Langdon, T.G.: Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 60, 3190 (2012).Google Scholar
Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).Google Scholar
Kawasaki, M. and Langdon, T.G.: The significance of strain reversals during processing by high-pressure torsion. Mater. Sci. Eng., A 498, 341 (2008).CrossRefGoogle Scholar
Kawasaki, M.: Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J. Mater. Sci. 49, 18 (2014).Google Scholar
Salishchev, G.A., Tikhonovsky, M.A., Shaysultanov, D.G., Stepanov, N.D., Kuznetsov, A.V., Kolodiy, I.V., Tortika, A.S., and Senkov, O.N.: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11 (2014).Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
Choi, I-C., Lee, D-H., Ahn, B., Durst, K., Kawasaki, M., Langdon, T.G., and Jang, J-I.: Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scr. Mater. 94, 44 (2015).Google Scholar
Choi, I-C., Kim, Y-J., Ahn, B., Kawasaki, M., Langdon, T.G., and Jang, J-I.: Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn–22% Al during high-pressure torsion. Scr. Mater. 75, 102 (2014).Google Scholar
Tsai, K-Y., Tsai, M-H., and Yeh, J-W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).Google Scholar
Chang, S-Y., Li, C-E., Huang, Y-C., Hsu, H-F., Yeh, J-W., and Lin, S-J.: Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Sci. Reports 4, 4162 (2014).Google Scholar
Bhattacharjee, P.P., Sathiara, G.D., Zaid, M., Gatti, J.R., Lee, C., Tsai, C-W., and Yeh, J-W.: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544 (2014).Google Scholar
Amouyal, Y., Divinski, S.V., Estrin, Y., and Rabkin, E.: Short-circuit diffusion in an ultrafine-grained copper–zirconium alloy produced by equal channel angular pressing. Acta Mater. 55, 5968 (2007).Google Scholar
Divinski, S.V., Ribbe, J., Baither, D., Schmitz, G., Reglitz, G., Rösner, H., Sato, K., Estrin, Y., and Wilde, G.: Nano- and micro-scale free volume in ultrafine grained Cu–1 wt.% Pb alloy deformed by equal channel angular pressing. Acta Mater. 57, 5706 (2009).Google Scholar
Divinski, S.V., Ribbe, J., Reglitz, G., Estrin, Y., and Wilde, G.: Percolating network of ultrafast transport channels in severely deformed nanocrystalline metals. J. Appl. Phys. 106, 063502 (2009).Google Scholar
Divinski, S.V., Reglitz, G., Rösner, H., Estrin, Y., and Wilde, G.: Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 59, 1974 (2011).Google Scholar
Oh-ishi, K., Edalati, K., Kim, H-S., Hono, K., and Horita, Z.: High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 61, 3482 (2013).Google Scholar
Ahn, B., Zhilyaev, A.P., Lee, H-J., Kawasaki, M., and Langdon, T.G.: Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater. Sci. Eng., A 635, 109 (2015).Google Scholar
Minamino, Y., Yamane, T., and Shimomura, A.: Effect of high pressure on interdiffusion in an Al-Mg alloy. J. Mater. Sci. 18, 2679 (1983).Google Scholar
Edalati, K., Miresmaeili, R., Horita, Z., Kanayama, H., and Pippan, R.: Significance of temperature increase in processing by high-pressure torsion. Mater. Sci. Eng., A 528, 7301 (2011).Google Scholar
Pereira, P.H.R., Figueiredo, R.B., Huang, Y., Cetlin, P.R., and Langdon, T.G.: Modeling the temperature rise in high-pressure torsion. Mater. Sci. Eng., A 593, 185 (2014).Google Scholar
Kim, H-S.: Finite element analysis of high pressure torsion processing. J. Mater. Process. Technol. 113, 617 (2001).Google Scholar
Choi, I-C., Kim, Y-J., Wang, Y.M., Ramamurty, U., and Jang, J-I.: Nanoindentation behavior of nanotwinned Cu: Influences of indenter angle on hardness, strain rate sensitivity and activation volume. Acta Mater. 61, 7313 (2013).Google Scholar
Shim, S., Jang, J-I., and Pharr, G.M.: Extraction of flow properties of single crystal silicon carbide by nanoindentation and finite element simulation. Acta Mater. 56, 3824 (2008).CrossRefGoogle Scholar
Wang, C.L., Lai, Y.H., Huang, J.C., and Nieh, T.G.: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62, 175 (2010).CrossRefGoogle Scholar
Dalla Torre, F., Spätig, P., Schäublin, R., and Victoria, M.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 53, 2337 (2005).Google Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).Google Scholar
Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).Google Scholar
Chen, J., Lu, L., and Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 (2006).Google Scholar
Wang, Y.M., Hamza, A.V., and Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).Google Scholar
Zhu, T., Li, J., Samanta, A., Kim, H-G., and Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. USA 104, 3031 (2007).Google Scholar
Conrad, H.: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).Google Scholar
Conard, H.: Plastic deformation kinetics in nanocrystalline FCC metals based on the pile-up of dislocations. Nanotechnology 18, 325701 (2007).Google Scholar
Frost, H.J. and Ashby, M.F.: Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982).Google Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).Google Scholar
Ma, E.: Watching the nanograins roll. Science 305, 623 (2004).Google Scholar
Asaro, R.J. and Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 (2005).Google Scholar
Wu, D., Zhang, J., Huang, J.C., Bei, H., and Nieh, T.G.: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals. Scr. Mater. 68, 118 (2013).Google Scholar
Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).Google Scholar
Zhang, K., Weertman, J.R., and Eastman, J.A.: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).Google Scholar
Zhang, K., Weertman, J.R., and Eastman, J.A.: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).Google Scholar
Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H., Li, X., Mukherjee, A.K., Bingert, J.F., and Zhu, Y.T.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).Google Scholar