Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T15:23:47.072Z Has data issue: false hasContentIssue false

Multigeneration solution-processed method for silver nanotriangles exhibiting narrow linewidth (∼170 nm) absorption in near-infrared

Published online by Cambridge University Press:  16 September 2019

Anmol Walia
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, India
Sandeep Kumar
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, India
Abhishek Ramachandran
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, India; and Department of Physics, Indian Institute of Technology, New Delhi 110016, India
Asmita Sharma
Affiliation:
Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
Rajinder Deol
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, India
Ghassan E. Jabbour
Affiliation:
School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa K1N 6N5, Canada
Ravi Shankar
Affiliation:
Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
Madhusudan Singh*
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Bottom-up assembly of nanomaterials using solution-processed methods is ideally suited for use in fabrication of large-area optoelectronic devices. Tailorable visible and near-infrared absorption in shaped nanostructured noble metals is strongly influenced by localized plasmon resonance effects. Obtaining sharp and selective absorption with solution-processed methods is a challenge and requires suitable control on the growth kinetics, which ultimately results in appropriate size and morphology of the final product. In this work, a photo-assisted multigenerational growth process for synthesis of silver nanotriangle ink with narrow linewidth absorbance is developed. This technique combines photochemical and seed-mediated growth approaches. The resulting ink exhibits a sharp absorption at 700 nm with full width at half maximum of 170 nm, verified by absorption as well as dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy measurements. Numerical modeling using finite-difference time-domain calculations yields a close match with observed absorption and is used to examine electric field distribution and enhancement factor resonating at 720 nm. The synthesis technique is potentially useable for production of highly selective absorbers in solution phase.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Choi, H.W., Zhou, T., Singh, M., and Jabbour, G.E.: Recent developments and directions in printed nanomaterials. Nanoscale 7, 3338 (2015).CrossRefGoogle ScholarPubMed
Xiao, M., Jiang, R., Wang, F., Fang, C., Wang, J., and Yu, J.C.: Plasmon-enhanced chemical reactions. J. Mater. Chem. A 1, 5790 (2013).CrossRefGoogle Scholar
Wang, F., Li, C., Chen, H., Jiang, R., Sun, L.D., Li, Q., Wang, J., Yu, J.C., and Yan, C.H.: Plasmonic harvesting of light energy for suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588 (2013).CrossRefGoogle ScholarPubMed
Yao, K., Salvador, M., Chueh, C.C., Xin, X.K., Xu, Y.X., deQuilettes, D.W., Hu, T., Chen, Y., Ginger, D.S., and Jen, A.K.Y.: A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv. Energy Mater. 4, 1400206 (2014).CrossRefGoogle Scholar
Wang, H., Lim, J.W., Mota, F.M., Jang, Y.J., Yoon, M., Kim, H., Hu, W., Noh, Y.Y., and Kim, D.H.: Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. J. Mater. Chem. C 5, 399 (2017).CrossRefGoogle Scholar
Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., and Baxter, S.C.: Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721 (2008).CrossRefGoogle ScholarPubMed
Tagliabue, G., Jermyn, A.S., Sundararaman, R., Welch, A.J., DuChene, J.S., Pala, R., Davoyan, A.R., Narang, P., and Atwater, H.A.: Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018).CrossRefGoogle ScholarPubMed
Runnerstrom, E.L., Llordés, A., Lounis, S.D., and Milliron, D.J.: Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50, 10555 (2014).CrossRefGoogle ScholarPubMed
Llordés, A., Wang, Y., Martinez, A.F., Xiao, P., Lee, T., Poulain, A., Zandi, O., Saez Cabezas, C.A., Henkelman, G., and Milliron, D.J.: Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat. Mater. 15, 1267 (2016).CrossRefGoogle ScholarPubMed
Llorente, V.B., Dzhagan, V.M., Gaponik, N., Iglesias, R.A., Zahn, D.R.T., and Lesnyak, V.: Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals. J. Phys. Chem. C 121, 18244 (2017).CrossRefGoogle Scholar
Garreau, A., Tabatabaei, M., Hou, R., Wallace, G.Q., Norton, P.R., and Lagugné-Labarthet, F.: Probing the plasmonic properties of heterometallic nanoprisms with near-field fluorescence microscopy. J. Phys. Chem. C 120, 20267 (2016).CrossRefGoogle Scholar
Wisser, F.M., Schumm, B., Mondin, G., Grothe, J., and Kaskel, S.: Precursor strategies for metallic nano and micropatterns using soft lithography. J. Phys. Chem. C 3, 2717 (2015).Google Scholar
Ibañez, D., Izquierdo, D., Blanco, C.F., Heras, A., and Colina, A.: Electrode-position of silver nanoparticles in the presence of different complexing agents by time-resolved Raman spectroelectrochemistry. J. Raman Spectrosc. 49, 482 (2018).CrossRefGoogle Scholar
Raut, N.C. and Al-Shamery, K.: Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6, 1618 (2018).CrossRefGoogle Scholar
Finn, D.J., Lotya, M., and Coleman, J.N.: Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7, 9254 (2015).CrossRefGoogle ScholarPubMed
Singh, M., Haverinen, H.M., Yoshioka, Y., and Jabbour, G.E.: Active electronics. In Inkjet Technology for Digital Fabrication, I.M. Hutchings and G.D. Martin, eds. (John Wiley & Sons, USA, 2012); p. 207.Google Scholar
Singh, M., Haverinen, H.M., Dhagat, P., and Jabbour, G.E.: Inkjet printing and its applications. Adv. Mater. 22, 673 (2010).CrossRefGoogle ScholarPubMed
Vicente, A.T., Araújo, A., Mendes, M.J., Nunes, D., Oliveira, M.J., Sobrado, O.S., Ferreira, M.P., Águas, H., Fortunato, E., and Martins, R.: Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C 6, 3143 (2018).CrossRefGoogle Scholar
Ringe, E., Van Duyne, R.P., and Marks, L.D.: Kinetic and thermodynamic modified wulff constructions for twinned nanoparticles. J. Phys. Chem. C 117, 15859 (2013).CrossRefGoogle Scholar
Ho, W.J., Fen, S., and Liu, J.J.: Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells. Appl. Phys. A 124, 29 (2018).CrossRefGoogle Scholar
Murphy, G.P., Gough, J.J., Higgins, L.J., Karanikolas, V.D., Wilson, K.M., Coindreau, J.A.G., Zubialevich, V.Z., Parbrook, P.J., and Bradley, A.L.: Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well. Nanotechnology 28, 15401 (2017).CrossRefGoogle ScholarPubMed
Ye, S., Song, J., Tian, Y., Chen, L., Wang, D., Niu, H., and Qu, J.: Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale 7, 12706 (2015).CrossRefGoogle ScholarPubMed
Shankar, R., Shahi, V., and Sahoo, U.: Comparative study of linear poly(alkylarylsilane)s as reducing agents toward Ag(I) and Pd(II) ions synthesis of polymer-metal nanocomposites with variable size domains of metal nanoparticles. Chem. Mater. 22, 1367 (2010).CrossRefGoogle Scholar
Kim, B.H. and Lee, J.S.: One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater. Chem. Phys. 149, 678 (2015).CrossRefGoogle Scholar
Bastús, N.G., Merkoçi, F., Piella, J., and Puntes, V.: Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 26, 2836 (2014).CrossRefGoogle Scholar
Park, Y.M., Lee, B.G., Weon, J., and Kim, M.H.: One-step synthesis of silver nanoplates with high aspect ratios: Using coordination of silver ions to enhance lateral growth. RSC Adv. 6, 95768 (2016).CrossRefGoogle Scholar
Li, X., Choy, W., Lu, H., Sha, W.E.I., and Ho, A.: Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv. Funct. Mater. 23, 2728 (2013).CrossRefGoogle Scholar
Abulikemu, M., Da’as, E.H., Haverinen, H., Cha, D., Malik, M.A., and Jabbour, G.E.: In situ synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing. Angew. Chem. 126, 430 (2014).CrossRefGoogle Scholar
Hao, Y., Hao, Y., Sun, Q., Cui, Y., Li, Z., Ji, T., Wang, H., and Zhu, F.: Broadband EQE enhancement in organic solar cells with multiple-shaped silver nanoparticles: Optical coupling and interfacial engineering. Mater. Today Energy 3, 84 (2017).CrossRefGoogle Scholar
Kulkarni, A.P., Noone, K.M., Munechika, K., Guyer, S.R., and Ginger, D.S.: Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10, 1501 (2010).CrossRefGoogle ScholarPubMed
Kumar, A., Kim, S., and Nam, J.M.: Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 138, 14509 (2016).CrossRefGoogle ScholarPubMed
Jensen, T.R., Malinsky, M.D., Haynes, C.L., and Duyne, R.P.V.: Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. C 104, 10549 (2000).CrossRefGoogle Scholar
Haes, A.J., Haynes, C.L., McFarland, A.D., Schatz, G.C., Duyne, R.P.V., and Zou, S.: Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 30, 368 (2005).CrossRefGoogle Scholar
Liu, X., Li, L., Yang, Y., Yin, Y., and Gao, C.: One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale 6, 4513 (2014).CrossRefGoogle ScholarPubMed
Wu, C., Zhou, X., and Wei, J.: Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction. Nanoscale Res. Lett. 10, 354 (2015).CrossRefGoogle ScholarPubMed
Khan, A.U., Zhou, Z., Krause, J., and Liu, G.: Poly(vinylpyrrolidone)-free multistep synthesis of silver nanoplates with plasmon resonance in the near infrared range. Small 13, 1701715 (2017).CrossRefGoogle ScholarPubMed
Yen, C.W., Puig, H., Tam, J.O., Márquez, J.G., Bosch, I., Schifferli, K., and Gehrke, L.: Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and ebola viruses. Lab Chip 15, 1638 (2015).CrossRefGoogle ScholarPubMed
Zheng, X., Peng, Y., Cui, X., and Zheng, W.: Modulation of the shape and localized surface plasmon resonance of silver nanoparticles via halide ion etching and photochemical regrowth. Mater. Lett. 173, 88 (2016).CrossRefGoogle Scholar
Shuford, K.L., Ratner, M.A., and Schatz, G.C.: Multipolar excitation in triangular nanoprisms. J. Chem. Phys. 123, 114713 (2005).CrossRefGoogle ScholarPubMed
Tang, B., Zhang, M., Yao, Y., Sun, L., Li, J., Xu, S., Chen, W., Xu, W., and Wang, X.: Photoinduced reversible shape conversion of silver nanoparticles assisted by TiO2. Phys. Chem. Chem. Phys. 16, 21999 (2014).CrossRefGoogle Scholar
Lee, G.P., Shi, Y., Lavoie, E., Daeneke, T., Reineck, P., Cappel, U.B., Huang, D.M., and Bach, U.: Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano 7, 5911 (2013).CrossRefGoogle ScholarPubMed
Myroshnychenko, V., Nishio, N., Abajo, F.J.G., Förstner, J., and Yamamoto, N.: Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution. ACS Nano 12, 8436 (2018).CrossRefGoogle ScholarPubMed
Tanabe, K.: Field enhancement around metal nanoparticles and nanoshells: A systematic investigation. J. Phys. Chem. C 112, 15721 (2008).CrossRefGoogle Scholar
Chanda, D., Shigeta, K., Truong, T., Lui, E., Mihi, A., Schulmerich, M., Braun, P.V., Bhargava, R., and Rogers, J.A.: Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat. Commun. 2, 479 (2011).CrossRefGoogle ScholarPubMed
Wang, J., Fan, C., Ding, P., He, J., Cheng, Y., Hu, W., Cai, G., Liang, E., and Xue, Q.: Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt. Express 20, 14871 (2012).CrossRefGoogle ScholarPubMed
Bahramipanah, M., Abrishamian, M.S., Mirtaheri, S.A., and Liu, J.M.: Ultracompact plasmonic loop–stub notch filter and sensor. Sens. Actuators, B 194, 311 (2014).CrossRefGoogle Scholar
Yi, F., Shim, E., Zhu, A.Y., Zhu, H., Reed, J.C., and Cubukcu, E.: Electrically tunable plasmonic absorber enabled by indium tin oxide. In CLEO: 2013, Vol. 1 (IEEE, San Jose, CA, 2013); pp. 12.Google Scholar
Chen, X., Shi, Y., Lou, F., Chen, Y., Yan, M., Wosinski, L., and Qiu, M.: Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Opt. Express 22, 25233 (2014).CrossRefGoogle ScholarPubMed
Maillard, M., Huang, P., and Brus, L.: Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett. 3, 1611 (2003).CrossRefGoogle Scholar
Palik, E.D.: Handbook of Optical Constants of Solids, 1st ed. (Academic Press, Newton, Massachusetts, 1985).Google Scholar