Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:22:49.177Z Has data issue: false hasContentIssue false

Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems

Published online by Cambridge University Press:  31 January 2011

Hyun-Kyu Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
Woo-Sang Jung
Affiliation:
Materials Science and Technology Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
Byeong-Joo Lee*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Modified embedded-atom method (MEAM) interatomic potentials for Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems have been developed based on the previously developed MEAM potentials for lower order systems. The potentials reproduce various fundamental physical properties (structural properties, elastic properties, thermal properties, and surface properties) of NbC and NbN, and interfacial energy between bcc Fe and NbC or NbN, in generally good agreement with higher-level calculations or experimental information. The applicability of the present potentials to atomic-level investigations to the precipitation behavior of complex-carbonitrides (Nb,Ti)(C,N) as well as NbC and NbN, and their effects on the mechanical properties of steels are also discussed.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Isaev, E.I., Simak, S.I., Abrikosov, I.A., Ahuja, R., Vekilov, Yu.Kh., Katsnelson, M.I., Lichtenstein, A.I., Johansson, B.Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. J. Appl. Phys. 101, 123519 (2007)CrossRefGoogle Scholar
2.Isaev, E.I., Ahuja, R., Simak, S.I., Lichtenstein, A.I., Vekilov, Y.K., Johansson, B., Abrikosov, I.A.Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides. Phys. Rev. B 72, 064515 (2005)CrossRefGoogle Scholar
3.Joshi, K.B., Paliwal, U.First-principles study of structural and bonding properties of vanadium carbide and niobium carbide. Phys. Scr. 80, 055601 (2009)CrossRefGoogle Scholar
4.Tran, F., Laskowski, R., Blaha, P., Schwarz, K.Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B 75, 115131 (2007)CrossRefGoogle Scholar
5.Jung, W-S., Chung, S-H., Ha, H-P., Byun, J-Y.An ab initio study of the energetics for interfaces between group V transition metal nitrides and bcc iron. Modell. Simul. Mater. Sci. Eng. 14, 479 (2006)CrossRefGoogle Scholar
6.Chung, S-H., Ha, H-P., Jung, W-S., Byun, J-Y.An ab initio study of the energetics for interfaces between group V transition metal carbides and bcc iron. ISIJ Int. 46, 1523 (2006)CrossRefGoogle Scholar
7.Wu, Z., Chen, X.J., Struzhkin, V.V., Cohen, R.E.Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys. Rev. B 71, 214103 (2005)CrossRefGoogle Scholar
8.Chen, X.J., Struzhkin, V.V., Wu, Z., Somayazulu, M., Qian, J., Kung, S., Christensen, A.N., Zhao, Y., Cohen, R.E., Mao, H.K., Hemley, R.J.Hard superconducting nitrides. Proc. Nat. Acad. Sci. U.S.A. 102, 3198 (2005)CrossRefGoogle ScholarPubMed
9.Iskandarova, I.M., Knizhnik, A.A., Potapkin, B.V., Safonov, A.A., Bagatur'yants, A.A., Fonseca, L.R.C.First-principles investigation of the electronic properties of niobium and molybdenum mononitride surfaces. Surf. Sci. 583, 69 (2005)CrossRefGoogle Scholar
10.Hugosson, H.W., Eriksson, O., Jansson, U., Ruban, A.V., Souvatzis, P., Abrikosov, I.A.Surface energies and work functions of the transition metal carbides. Surf. Sci. 557, 243 (2004)CrossRefGoogle Scholar
11.Hugosson, H.W., Eriksson, O., Jansson, U., Johansson, B.Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B 63, 134108 (2001)CrossRefGoogle Scholar
12.Amriou, T., Bouhafs, B., Aourag, H., Khelifa, B., Bresson, S., Mathieu, C.FP-LAPW investigations of electronic structure and bonding mechanism of NbC and NbN compounds. Physica B 325, 46 (2003)CrossRefGoogle Scholar
13.Stampfl, C., Mannstadt, W., Asahi, R., Freeman, A.J.Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys. Rev. B 63, 155106 (2001)CrossRefGoogle Scholar
14.Kobayashi, K.Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Jpn. J. Appl. Phys. 39, 4311 (2000)CrossRefGoogle Scholar
15.Hart, G.L.W., Klein, B.M.Phonon and elastic instabilities in MoC and MoN. Phys. Rev. B 61, 3151 (2000)CrossRefGoogle Scholar
16.Öğüt, S., Rabe, K.M.Polymorphism and metastability in NbN: Structural predictions from first principles. Phys. Rev. B 52, R8585 (1995)CrossRefGoogle ScholarPubMed
17.Guillermet, A.F., Häglund, J., Grimvall, G.Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure. Phys. Rev. B 45, 11557 (1992)CrossRefGoogle Scholar
18.Chen, J., Boyer, L.L., Krakauer, H., Mehl, M.J.Elastic constants of NbC and MoN: Instability of B 1-MoN. Phys. Rev. B 37, 3295 (1988)CrossRefGoogle ScholarPubMed
19.Papaconstantopoulos, D.A., Pickett, W.E., Klein, B.M., Boyer, L.L.Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B 31, 752 (1985)CrossRefGoogle ScholarPubMed
20.Lee, B-J., Baskes, M.I.Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 (2000)CrossRefGoogle Scholar
21.Lee, B-J., Baskes, M.I., Kim, H., Cho, Y.K.Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001)CrossRefGoogle Scholar
22.Baskes, M.I.Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992)CrossRefGoogle ScholarPubMed
23.Lee, B-J., Lee, J.W.A modified embedded atom method interatomic potential for carbon. Calphad 29, 7 (2005)CrossRefGoogle Scholar
24.Lee, B-J.A modified embedded-atom method interatomic potential for the Fe–C system. Acta Mater. 54, 701 (2006)CrossRefGoogle Scholar
25.Lee, B-J., Lee, T-H., Kim, S-J.A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system. Acta Mater. 54, 4597 (2006)CrossRefGoogle Scholar
26.Sa, I.Y., Lee, B-J.Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems. Scr. Mater. 59, 595 (2008)CrossRefGoogle Scholar
27.Kim, Y-M., Lee, B-J.Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems. Acta Mater. 56, 3481 (2008)CrossRefGoogle Scholar
28.Kim, H-K., Jung, W-S., Lee, B-J.Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems. Acta Mater. 57, 3140 (2009)CrossRefGoogle Scholar
29.Rose, J.H., Smith, J.R., Guinea, F., Ferrante, J.Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984)CrossRefGoogle Scholar
30.Baskes, M.I.Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, 152 (1997)CrossRefGoogle Scholar
31.Rudy, E., Benesovsky, F., Sedlatschek, K.A study of the Nb-Mo-C system. Monatsh. Chem. 92, 841 (1961)CrossRefGoogle Scholar
32.Pierson, H.O.Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, Westwood, NJ 1996)Google Scholar
33.Toth, L.E.Transition Metal Carbides and Nitrides (Academic Press, New York 1971)Google Scholar
34.Storm, E.K.Los Alamos Scientific Laboratory Report La-2942 (The Office of Technical Services, U.S. Department of Commerce, Washington, DC 1964)Google Scholar
35.Huber, E.J. Jr., Head, E.L., Holley, C.E. Jr., Storms, E.K., Krikorian, N.H.The heats of combustion of niobium carbides. J. Phys. Chem. 65, 1846 (1961)CrossRefGoogle Scholar
36.Storms, E.K., Krikorian, N.H.The niobium-niobium carbide system. J. Phys. Chem. 64, 1471 (1960)CrossRefGoogle Scholar
37.Parkin, I.P.Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: Ionic or elemental pathways. Chem. Soc. Rev. 25, 199 (1996)CrossRefGoogle Scholar
38.Teresiak, A., Kubsch, H.X-ray investigations of high-energy ball milled transition metal carbides. Nanostruct. Mater. 6, 671 (1995)CrossRefGoogle Scholar
39.Huang, W., Selleby, M.Thermodynamic assessment of the Nb-W-C system. Z. Metallkd. 88, 55 (1997)Google Scholar
40.Lee, B-J.Thermodynamic assessment of the Fe-Nb-Ti-C-N system. Metall. Mater. Trans. A 32, 2423 (2001)CrossRefGoogle Scholar
41.Christensen, A.N.Preparation and structure of stoichiometric δ-NbN. Acta Chem. Scand. Ser. A 31, 77 (1977)CrossRefGoogle Scholar
42.Heger, G., Baumgartner, O.Crystal structure and lattice distortion of γ-NbNx and δ-NbNx. J. Phys. C: Solid State Phys. 13, 5833 (1980)CrossRefGoogle Scholar
43.Lengauer, W., Ettmayer, P.Preparation and properties of compact cubic δ-NbN1–x. Monatsh. Chem. 117, 275 (1986)CrossRefGoogle Scholar
44.Brauer, G., Kirner, H.High pressure synthesis of niobium nitrides and constitution of δ-NbN. Z. Anorg. Allg. Chem. 328, 34 (1964)CrossRefGoogle Scholar
45.Mah, A.D., Gellert, N.L.Heats of formation of niobium nitride, tantalum nitride and zirconium nitride from combustion calorimetry. J. Am. Chem. Soc. 78, 3261 (1956)CrossRefGoogle Scholar
46.Chase, M.W. Jr., Davies, C.A., Downey, J.R. Jr., Frurip, D.J., McDonald, R.A., Syverud, A.N.JANAF themodynamics tables 3rd ed.J. Phys. Chem. Ref. Data 14, (Suppl. 1)1616 (1985)Google Scholar
47.Huang, W.Thermodynamic assessment of the Nb-N system. Metall. Mater. Trans. A 27, 3591 (1996)CrossRefGoogle Scholar
48.Panaioti, T.A.Ion nitriding of tantalum and niobium alloys. Met. Sci. Heat Treat. 44, 439 (2002)Google Scholar
49.Christensen, A.N.Preparation and crystal structure of β-Nb2N and γ-NbN. Acta Chem. Scand. Ser. A 30, 219 (1976)CrossRefGoogle Scholar
50.Cost, J.R., Wert, C.A.Metal-gas equilibrium in the niobium-nitrogen terminal solid solution. Acta Metall. 11, 231 (1963)CrossRefGoogle Scholar
51.Mah, A.D.Heats of formation of niobium dioxide, niobium subnitride and tantalum subnitride. J. Am. Chem. Soc. 80, 3872 (1958)CrossRefGoogle Scholar
52.Gubanov, V.A., Ivanovsky, A.L., Zhukov, V.P.Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, Cambridge, UK 1994)CrossRefGoogle Scholar
53.Weber, W.Lattice dynamics of transition-metal carbides. Phys. Rev. B 8, 5082 (1973)CrossRefGoogle Scholar
54.Christensen, A.N., Dietrich, O.W., Kress, W., Teuchert, W.D., Currat, R.Phonon anomalies in transition metal nitrides: δ-NbN. Solid State Commun. 31, 795 (1979)CrossRefGoogle Scholar
55.Kim, J.O., Achenbach, J.D., Mirkarimi, P.B., Shinn, M., Barnett, S.A.Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. J. Appl. Phys. 72, 1805 (1992)CrossRefGoogle Scholar
56.Lee, B-J.Update of steel database Unpublished work at KTH (1999)Google Scholar
57.Perecherla, A., Williams, W.S.Room-temperature thermal conductivity of cemented transition-metal carbides. J. Am. Ceram. Soc. 71, 1130 (1988)CrossRefGoogle Scholar
58.Holleck, H.Material selection for hard coatings. J. Vac. Sci. Technol., A 4, 2661 (1986)CrossRefGoogle Scholar
59.Perrard, F., Deschamps, A., Maugis, P.Modelling the precipitation of NbC on dislocations in α-Fe. Acta Mater. 55, 1255 (2007)CrossRefGoogle Scholar
60.Fujita, N., Bhadeshia, H.K.D.H., Kikuchi, M.Precipitation sequence in niobium-alloyed ferritic stainless steel. Modell. Simul. Mater. Sci. Eng. 12, 273 (2004)CrossRefGoogle Scholar
61.Perrard, F., Donnadieu, P., Deschamps, A., Barges, P.TEM study of NbC heterogeneous precipitation in ferrite. Philos. Mag. 86, 4271 (2006)CrossRefGoogle Scholar
62.Wei, F.G., Hara, T., Tsuzaki, K.High-resolution transmission-electron-microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philos. Mag. 84, 1735 (2004)CrossRefGoogle Scholar
63.Miyata, K., Omura, T., Kushida, T., Komizo, Y.Coarsening kinetics of multicomponent MC-type carbides in high-strength low-alloy steels. Metall. Mater. Trans. A 34, 1565 (2003)CrossRefGoogle Scholar
64.Courtois, E., Epicier, T., Scott, C.EELS study of niobium carbo-nitride nano-precipitates in ferrite. Micron 37, 492 (2006)CrossRefGoogle ScholarPubMed