Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T01:33:40.636Z Has data issue: false hasContentIssue false

Microstructure of a bearing-grade silicon nitride

Published online by Cambridge University Press:  31 January 2011

Mingqi Liu
Affiliation:
Trex Enterprises, San Diego, California 92121–4339
Sia Nemat-Nasser
Affiliation:
Center of Excellence for Advanced Materials, Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, California 92093–0416
Get access

Abstract

The microstructure of a bearing-grade silicon nitride, prepared by pressureless sintering with Y2O3, AlN, and TiO2 additives and then hot-isostatically pressed, is examined with high-resolution transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. The material consists of large acicular β–Si3N4 grains and small equiaxial α–Si3N4 grains. An amorphous phase containing the sintering aids is observed at the two-grain boundaries and at the grain pockets. No crystalline boundary phase is identified. The α-to-β and β-to-β grain boundaries appear straight and well defined. The dominant crystalline planes observed at the β-grain boundaries are (1010) and (1120). The intergranular spacing of the two-grain boundaries (α-to-β and β-to-β) is 1.0 nm when a high-contrast boundary phase is present, and it is 0.8 nm when a low-contrast boundary phase is present, confirming that the film thickness is strongly dependent on the boundary-phase composition. The α-to-α boundaries are often curved, and the thickness of the amorphous film at these boundaries varies from 0.7 to 1.1 nm. Evidence of near-intimate contact between β-grains is also observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Katz, R.N., Interceramics 4, 231 (1992).Google Scholar
2.Chudecki, J.F., Ceram. Bull. 69, 1113 (1990).Google Scholar
3.Gates, R.S. and Hsu, S.M., Tribol. Trans. 34, 417 (1991).CrossRefGoogle Scholar
4.Winn, A.J., Dowson, D., and Bell, J.C., Tribol. Int. 28, 383 (1995).CrossRefGoogle Scholar
5.Winn, A.J., Dowson, D., and Bell, J.C., Tribol. Int. 28, 395 (1995).CrossRefGoogle Scholar
6.Melandri, C., Gee, M.G., De Portu, G., and Guicciardi, S., Tribol. Int. 28, 403 (1995).CrossRefGoogle Scholar
7.Liu, W., Duda, J.L., and Klaus, E.E., Wear 199, 217 (1996).CrossRefGoogle Scholar
8.Novak, S., Drazic, G., Samardzija, Z., Kalin, M., and Vizintin, J., Mater. Sci. Eng. A215, 125 (1996).CrossRefGoogle Scholar
9.Kalin, M., Vizintin, J., and Novak, S., Mater. Sci. Eng. A220, 191 (1996).CrossRefGoogle Scholar
10.Ichikawa, M., Takamatsu, T., Shindou, N., Okabe, N., and Abe, Y., JSME Int. J. 38, 226 (1995).Google Scholar
11.Sharma, V., Nemat-Nasser, S., and Vecchio, K., J. Am. Ceram. Soc. 81, 129 (1998).CrossRefGoogle Scholar
12.Richerson, D.W., Am. Ceram. Soc. Bull. 52, 560 (1973).Google Scholar
13.Mazdiyasni, K.S. and Cooke, C.M., J. Am. Ceram. Soc. 57, 536 (1974).CrossRefGoogle Scholar
14.Clarke, D.R., Zaluzec, N.J., and Carpenter, R.W., J. Am. Ceram. Soc. 64, 608 (1981).CrossRefGoogle Scholar
15.Cinibulk, M. and Thomas, G., J. Am. Ceram. Soc. 73, 1606 (1990).CrossRefGoogle Scholar
16.Sharma, V., Nemat-Nasser, S., and Vecchio, K., Exp. Mech. 21, 315 (1994).CrossRefGoogle Scholar
17.Thomas, G., J. Eur. Ceram. 16, 323 (1996).CrossRefGoogle Scholar
18.Fischer, T.E. and Tomizawa, H., Wear 105, 29 (1985).CrossRefGoogle Scholar
19.Zutshi, A., Haber, R.A., Niesz, D.E., Adams, J.W., Wachtman, J.B., Ferber, M.K., and Hsu, S.M., J. Am. Ceram. Soc. 77, 883 (1994).CrossRefGoogle Scholar
20.Thomas, G. and Goringe, M.J., Transmission Electron Microscopy of Materials (J. Wiley & Sons, New York, 1981).Google Scholar
21.Clarke, D.R. and Thomas, G., J. Am. Ceram. Soc. 60, 491 (1977).CrossRefGoogle Scholar
22.Clarke, D.R., Ultramicroscopy 4, 33 (1979).CrossRefGoogle Scholar
23.Ramsey, P.M. and Page, T.F., Proc. Br. Ceram. Soc. 87, 74 (1988).Google Scholar
24.Metals Handbook, 9th ed. (ASM International, Materials Park, OH, 1985), Vol. 8, pp. 9496.Google Scholar
25.Sargent, P.M. and Page, T.F., Proc. Br. Ceram. Soc. 26, 209 (1978).Google Scholar
26.Hirosaki, N. and Akimune, Y., J. Am. Ceram. Soc. 77, 1093 (1991).CrossRefGoogle Scholar
27.Lewis, M.H., Powell, B.D., Drew, D., Lumby, R.J., North, B., and Taylor, A.J., J. Mater. Sci. 12, 61 (1977).CrossRefGoogle Scholar
28.Butler, E., Philos. Mag. 21, 829 (1971).CrossRefGoogle Scholar
29.Clarke, D.R., Annu. Rev. Mater. Sci. 17, 57 (1987).CrossRefGoogle Scholar
30.Pan, X., Gu, H., Weeren, R., Danforth, S.C., Cannon, R., and Ruhle, M., J. Am. Ceram. Soc. 79, 2313 (1996).CrossRefGoogle Scholar
31.Wang, C., Mitomo, M., Nishimura, T., and Bando, Y., J. Am. Ceram. Soc. 80, 1213 (1997).CrossRefGoogle Scholar
32.Kleebe, H-J., Cinibulk, K.M., Tanaka, I., Bruley, J., Cannon, R.M., Clarke, D.R., Hoffman, M.J., and Ruhle, M., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I-W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T.S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), pp. 6578.Google Scholar
33.Liu, M. and Nemat-Nasser, S., Mater. Sci. Eng. A254, 242 (1998).CrossRefGoogle Scholar
34.Bernard-Granger, G., Crampon, J., and Duclos, R., J. Mater. Sci. Lett. 14, 1362 (1995).CrossRefGoogle Scholar
35.Raj, R. and Lange, F.F., Acta Metall. 29, 1993 (1981).CrossRefGoogle Scholar
36.Buerger, M.J., in Phase Transformations in Solids, edited by Smoluchowski, R., Mayer, J.E., and Weyl, W.A. (John Wiley & Sons, New York, 1951), pp. 183211.Google Scholar
37.Messier, D.R., Riley, F.L., and Brook, R.J., J. Mater. Sci. 13, 1199 (1978).CrossRefGoogle Scholar
38.Sarin, V.K., Mater. Sci. Eng. A105/106, 151 (1988).CrossRefGoogle Scholar
39.Ferber, M.K., Jenkins, M.G., Nolan, T.A., and Yeckley, R.L., J. Am. Ceram. Soc. 77, 657 (1994).CrossRefGoogle Scholar