Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T15:06:00.389Z Has data issue: false hasContentIssue false

Microstructure effect of nanocrystalline titanium dioxide prepared by microemulsion technique on photocatalytic decomposition of phenol

Published online by Cambridge University Press:  03 March 2011

Theera Anukunprasert*
Affiliation:
Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
Chintana Saiwan
Affiliation:
Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
Enrico Traversa
Affiliation:
Department of Chemical Science and Technology, University of Rome “Tor Vergata,” Rome, Italy
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Titanium dioxide (TiO2) was synthesized in the water-in-oil (w/o) microemulsion system of n-heptane/water/sodium bis (2-ethylhexyl) sulfosuccinate (AOT) surfactant. This study reports the effect of microstructure of the synthesized TiO2 nanoparticles on the photocatalysis degradation of phenol in an aqueous solution, as compared to commercial TiO2 (P25) and TiO2 synthesized by bulk precipitation. The results indicated that the rate of phenol decomposition catalyzed by the synthesized TiO2 from microemulsion techniques is faster than those of TiO2 synthesized by bulk precipitation and commercial P25. This is due to the small crystal size of TiO2 prepared by the microemulsion technique. The exposed titanium sites on the surface controlled by the morphology of synthesized TiO2 are critical for photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Traversa, E.: Intelligent ceramic material for chemical sensors. J. Intell. Mater. Syst. Structure 6, 860 (1995).CrossRefGoogle Scholar
2.Barsan, N., Weimar, U.: Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143 (2001).CrossRefGoogle Scholar
3.Trindade, T., Brien, P.O., Pickett, N.L.: Nanocrystalline semiconductors: Synthesis, properties and perspectives. Chem. Mater. 13, 3843 (2001).CrossRefGoogle Scholar
4.Shi, L., Li, C., Gu, H., Fang, D.: Morphology and properties of ultrafine SnO2-TiO2 coupled particles. Mater. Chem. Phys. 62, 62 (2000).CrossRefGoogle Scholar
5.Zakrzewska, K.: Mixed oxide as gas sensors. Thin Solid Films 391, 229 (2001).CrossRefGoogle Scholar
6.Ilisz, I., Dombi, A.: Investigation of photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. II. Effect of charge-trapping species on product distribution. Appl. Catal. Gen. 180, 35 (1999).CrossRefGoogle Scholar
7.Alemany, L.J., Banares, M.A., Pardo, E., Martin, F., Fereres, M.G., Blasco, J.M.: Photodegradation of phenol in water using silica-supported titania catalyst. Appl. Catal. Environ. 13, 289 (1997).CrossRefGoogle Scholar
8.Peiro, A.M., Ayllon, J.A., Peral, J., Domenech, X.: TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds. Appl. Catal. Environ. 30, 359 (2001).CrossRefGoogle Scholar
9.Song, K.C., Kang, Y.: Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Mater. Lett. 45, 283 (2000).CrossRefGoogle Scholar
10.Dalas, E., Sakkopoulos, S., Vitoratos, E., Kobotiatis, L.: Synthesis of palladium nanoparticles in water-in-oil microemulsions. J. Mater. Sci. 20, 5456 (1993).CrossRefGoogle Scholar
11.Han, S., Yang, H., Kim, J.: Preparation and properties of vanadium-doped SnO2 nanocrystallites. Sens. Actuators, B 66, 112 (2000).CrossRefGoogle Scholar
12.Wu, M., Chen, D., Huang, T.: Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17, 3877 (2001).CrossRefGoogle Scholar
13.Song, K.C., Kim, J.H.: Preparation of nanosized tin oxide particles from water-in-oil microemulsions. J. Colloid Interface Sci. 212, 193 (1999).CrossRefGoogle Scholar
14.Deduigne, F., Jeunieau, L., Wiame, M., Nagy, J.B.: Synthesis of organic nanoparticles in different w/o microemulsion. Langmuir 16, 7605 (2000).CrossRefGoogle Scholar
15.Ingelsten, H.H., Bagwe, R., Palmqvist, A., Skoglundh, M., Svanberg, C., Holmberg, K., Shah, D.O.: Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions. J. Colloid Interface Sci. 241, 104 (2001).CrossRefGoogle ScholarPubMed
16.Quinlan, F.T.: Reverse micelles synthesis and characterization of ZnSe nanoparticles. Langmuir 16, 4049 (2000).CrossRefGoogle Scholar
17.Saiwan, C., Krathong, S., Anukunprasert, T., III, E.A. O’Rear: Nanotitanium dioxide synthesis in AOT microemulsion system with salinity scan. J. Chem. Eng. Jpn. 37, 279 (2002).CrossRefGoogle Scholar
18.O’Shea, K.E., Hammett, C. Cardona: Study on the TiO2-catalyzed photooxidation of para-substituted phenols: A kinetic and mechanistic analysis. J. Org. Chem. 59, 5005 (1994).CrossRefGoogle Scholar
19.Kim, E.J., Hahn, H.: Microstructure and photocatalytic activity of titania nanoparticles prepared in nonionic w/o microemulsion. Mater. Sci. Eng., A 303, 24 (2001).CrossRefGoogle Scholar
20.Andersson, M., Österlund, L., Ljungstrom, S., Palmqvist, A.: Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 106, 10674 (2002).CrossRefGoogle Scholar
21.Capek, I.: Preparation of metal oxide nanoparticle in water-in-oiled (w/o) microemulsions. Adv. Colloid Interface Sci. 110, 49 (2004).CrossRefGoogle Scholar
22.Padmanabhan, P.V.A., Sreekumar, K.P., Thiyagarajan, T.K., Satpute, R.U., Bhanumurthy, K., Sengupta, P., Dey, G.K., Warrier, K.G.K. Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum (in press).Google Scholar
23.Sobczyński, A., Duczmal, Ł., Zmudziński, W.: Phenol destruction by photocatalysis on TiO2: An attempt to solve the reaction mechanism. J. Mol. Catal. A: Chem. 213, 225 (2004).CrossRefGoogle Scholar
24.Keshmiri, M., Mohseni, M., Troczynki, T.: Development of novel TiO2 sol-gel-derived composite and its photocatalytic activities for trichloroethylene oxidation. Appl. Catal., B: Env. 53, 209 (2004).CrossRefGoogle Scholar
25.Boujday, S., Wünsh, F., Portes, P., Bocquet, J., Colbeau-Justin, C.: Sol. Energy Mater Sol. Cells 83, 421 (2004).CrossRefGoogle Scholar
26.Kolen’ko, Y.V., Churagulov, B.R., Kunst, M., Mazerolles, L., Colbeau-Justin, C.: Photocatalytic properties of titania powders prepared by hydrothermal method. Appl. Catal., B: Env. 54, 51 (2004).CrossRefGoogle Scholar
27.Chhor, K., Bocquet, J.F., Colbeau-Justin, C.: Comparative studies of phenol and salicylic acid photocatalytic degradation: Influence of adsorbed oxygen. Mater. Chem. Phys. 86, 123 (2004).CrossRefGoogle Scholar
28.Sun, B., Smirniotis, P.G.: Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catal. Today 88, 49 (2003).CrossRefGoogle Scholar
29.Antunes, C.S.A., Bietti, M., Salamone, M., Scione, N.: Early stage in the TiO2-photocatalyzed degradation of simple phenolic and non-phenolic lignin model compounds. J. Photochem. Photobiol., A: Chemistry 163, 453 (2004).CrossRefGoogle Scholar
30.Chiang, K., Lim, T.M., Tsen, L., Lee, C.C.: Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl. Catal., A: Gen. 261, 225 (2004).CrossRefGoogle Scholar
31.Parra, S., Olivero, J., Pacheco, L., Pulgarin, C.: Structural properties and photoreactivity relationships of substituted phenols in TiO2 suspensions. Appl. Catal., B: Env. 43, 239 (2003).CrossRefGoogle Scholar
32.Eastoe, J., Warne, B.: Nanoparticles and polymer synthesis in microemulsion. J. Colloid Interface Sci. 1, 800 (1996).Google Scholar